Suppr超能文献

光响应 Bric-A-Brack/Tramtrack/Broad 蛋白介导隐花色素 2 在低环境温度下的降解。

Light-Response Bric-A-Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature.

机构信息

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

University of Chinese Academy of Sciences, Shanghai 200032, China.

出版信息

Plant Cell. 2021 Dec 3;33(12):3610-3620. doi: 10.1093/plcell/koab219.

Abstract

Cryptochromes (crys) are photolyase-like blue-light receptors first discovered in Arabidopsis thaliana and later identified in all major evolutionary lineages. Crys are involved in not only blue light responses but also in temperature responses; however, whether and how cry protein stability is regulated by temperature remains unknown. Here, we show that cry2 protein abundance is modulated by ambient temperature and cry2 protein is degraded under low ambient temperature via the 26S proteasome. Consistent with this, cry2 shows high levels of ubiquitination under low ambient temperatures. Interestingly, cry2 degradation at low ambient temperatures occurs only under blue light and not under red light or dark conditions, indicating blue-light-dependent degradation of cry2 at low ambient temperature. Furthermore, low ambient temperature promotes physical interaction of Light-Response Bric-a-Brack/Tramtrack/Broad (LRB) proteins with cry2 to modulate its ubiquitination and protein stability in response to ambient temperature. LRBs promote high-temperature-induced hypocotyl elongation by modulating the protein stability of cry2 protein. These results indicate that cry2 accumulation is regulated by not only blue light but also ambient temperature, and LRBs are responsible for cry2 degradation at low ambient temperature. The stabilization of cry2 by high temperature makes cry2 a better negative regulator of temperature responses.

摘要

隐花色素(Cry)是最初在拟南芥中发现的光裂合酶样蓝光受体,后来在所有主要进化谱系中都有发现。Cry 不仅参与蓝光反应,还参与温度反应;然而,Cry 蛋白稳定性是否以及如何受到温度的调节仍然未知。在这里,我们表明 cry2 蛋白丰度受环境温度调节,cry2 蛋白在低温下通过 26S 蛋白酶体降解。与此一致的是,cry2 在低温下表现出高水平的泛素化。有趣的是,cry2 在低温下的降解仅发生在蓝光下,而不在红光或黑暗条件下,表明 cry2 在低温下依赖蓝光进行降解。此外,低温促进光响应 Bric-a-Brack/Tramtrack/Broad(LRB)蛋白与 cry2 的物理相互作用,以调节其在响应环境温度时的泛素化和蛋白稳定性。LRB 通过调节 cry2 蛋白的稳定性来促进高温诱导的下胚轴伸长。这些结果表明,cry2 的积累不仅受蓝光调节,还受环境温度调节,LRB 负责低温下 cry2 的降解。高温对 cry2 的稳定作用使其成为温度反应的更好负调控因子。

相似文献

2
Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases.
Nat Commun. 2021 Apr 12;12(1):2155. doi: 10.1038/s41467-021-22410-x.
3
Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus.
Plant Cell. 2007 Oct;19(10):3146-56. doi: 10.1105/tpc.107.053017. Epub 2007 Oct 26.
5
The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases.
Plant Cell Physiol. 2016 Oct;57(10):2175-2186. doi: 10.1093/pcp/pcw134. Epub 2016 Aug 11.
6
Arabidopsis cryptochrome 1 undergoes COP1 and LRBs-dependent degradation in response to high blue light.
New Phytol. 2022 May;234(4):1347-1362. doi: 10.1111/nph.17695. Epub 2021 Sep 23.
7
UBP12 and UBP13 deubiquitinases destabilize the CRY2 blue light receptor to regulate Arabidopsis growth.
Curr Biol. 2022 Aug 8;32(15):3221-3231.e6. doi: 10.1016/j.cub.2022.05.046. Epub 2022 Jun 13.
8
9
Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A.
Plant Cell. 2012 Jun;24(6):2610-23. doi: 10.1105/tpc.112.098210. Epub 2012 Jun 26.
10
Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17582-7. doi: 10.1073/pnas.1308987110. Epub 2013 Oct 7.

引用本文的文献

1
The CRY1-COP1-HY5 axis mediates blue-light regulation of Arabidopsis thermotolerance.
Plant Commun. 2025 Apr 14;6(4):101264. doi: 10.1016/j.xplc.2025.101264. Epub 2025 Jan 29.
2
The lowdown on breakdown: Open questions in plant proteolysis.
Plant Cell. 2024 Sep 3;36(9):2931-2975. doi: 10.1093/plcell/koae193.
3
Light signaling-mediated growth plasticity in Arabidopsis grown under high-temperature conditions.
Stress Biol. 2022 Dec 15;2(1):53. doi: 10.1007/s44154-022-00075-w.
4
CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing.
Nat Commun. 2022 Nov 17;13(1):7045. doi: 10.1038/s41467-022-34886-2.
5
Epigenetic regulation of thermomorphogenesis in .
aBIOTECH. 2022 Mar 14;3(1):12-24. doi: 10.1007/s42994-022-00070-9. eCollection 2022 Mar.
6
Light Quality Modulates Plant Cold Response and Freezing Tolerance.
Front Plant Sci. 2022 Jun 9;13:887103. doi: 10.3389/fpls.2022.887103. eCollection 2022.
7
The Function and Photoregulatory Mechanisms of Cryptochromes From Moso Bamboo ().
Front Plant Sci. 2022 Mar 30;13:866057. doi: 10.3389/fpls.2022.866057. eCollection 2022.
8
Signaling Mechanisms by Arabidopsis Cryptochromes.
Front Plant Sci. 2022 Feb 28;13:844714. doi: 10.3389/fpls.2022.844714. eCollection 2022.
10
How plants coordinate their development in response to light and temperature signals.
Plant Cell. 2022 Mar 4;34(3):955-966. doi: 10.1093/plcell/koab302.

本文引用的文献

1
Regulation of Arabidopsis photoreceptor CRY2 by two distinct E3 ubiquitin ligases.
Nat Commun. 2021 Apr 12;12(1):2155. doi: 10.1038/s41467-021-22410-x.
2
HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in .
Development. 2020 Dec 15;147(24):dev192625. doi: 10.1242/dev.192625.
3
SPAs promote thermomorphogenesis by regulating the phyB-PIF4 module in .
Development. 2020 Oct 8;147(19):dev189233. doi: 10.1242/dev.189233.
4
COR27 and COR28 Are Novel Regulators of the COP1-HY5 Regulatory Hub and Photomorphogenesis in Arabidopsis.
Plant Cell. 2020 Oct;32(10):3139-3154. doi: 10.1105/tpc.20.00195. Epub 2020 Aug 7.
5
Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2.
Nat Struct Mol Biol. 2020 May;27(5):472-479. doi: 10.1038/s41594-020-0410-z. Epub 2020 May 11.
6
The oligomeric structures of plant cryptochromes.
Nat Struct Mol Biol. 2020 May;27(5):480-488. doi: 10.1038/s41594-020-0420-x. Epub 2020 May 11.
8
Mechanisms of Cryptochrome-Mediated Photoresponses in Plants.
Annu Rev Plant Biol. 2020 Apr 29;71:103-129. doi: 10.1146/annurev-arplant-050718-100300. Epub 2020 Mar 13.
9
Photooligomerization Determines Photosensitivity and Photoreactivity of Plant Cryptochromes.
Mol Plant. 2020 Mar 2;13(3):398-413. doi: 10.1016/j.molp.2020.01.002. Epub 2020 Jan 14.
10
Thermomorphogenesis.
Annu Rev Plant Biol. 2019 Apr 29;70:321-346. doi: 10.1146/annurev-arplant-050718-095919. Epub 2019 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验