Suppr超能文献

全血细胞计数参数可预测住院死亡率。

Parameters of the complete blood count predict in hospital mortality.

机构信息

Department of Internal Medicine B, Laniado Hospital, Netanya, Israel.

Ruth and Bruce Rappaport School of Medicine, Haifa, Israel.

出版信息

Int J Lab Hematol. 2022 Feb;44(1):88-95. doi: 10.1111/ijlh.13684. Epub 2021 Aug 31.

Abstract

INTRODUCTION

Mortality rates are used to evaluate the quality of hospital care after adjusting for disease severity and, commonly also, for age, comorbidity, and laboratory data with only few parameters of the complete blood count (CBC).

OBJECTIVE

To identify the parameters of the CBC that predict independently in-hospital mortality of acutely admitted patients.

POPULATION

All patients were admitted to internal medicine, cardiology, and intensive care departments at the Laniado Hospital in Israel in 2018 and 2019.

VARIABLES

Independent variables were patients' age, sex, and parameters of the CBC. The outcome variable was in-hospital mortality.

ANALYSIS

Logistic regression. In 2018, we identified the variables that were associated with in-hospital mortality and validated this association in the 2019 cohort.

RESULTS

In the validation cohort, a model consisting of nine parameters that are commonly available in modern analyzers had a c-statistics (area under the receiver operator curve) of 0.86 and a 10%-90% risk gradient of 0%-21.4%. After including the proportions of large unstained cells, hypochromic, and macrocytic red cells, the c-statistic increased to 0.89, and the risk gradient to 0.1%-29.5%.

CONCLUSION

The commonly available parameters of the CBC predict in-hospital mortality. Addition of the proportions of hypochromic red cells, macrocytic red cells, and large unstained cells may improve the predictive value of the CBC.

摘要

简介

死亡率用于评估医院治疗质量,在调整疾病严重程度后,通常还会调整年龄、合并症和实验室数据,仅使用少数全血细胞计数(CBC)参数。

目的

确定可独立预测急性入院患者住院期间死亡率的 CBC 参数。

人群

2018 年和 2019 年,所有患者均被收入以色列拉尼亚多医院的内科、心脏病科和重症监护病房。

变量

自变量为患者年龄、性别和 CBC 参数。因变量为住院期间死亡率。

分析

逻辑回归。2018 年,我们确定了与住院期间死亡率相关的变量,并在 2019 年队列中验证了这种关联。

结果

在验证队列中,由现代分析仪中常用的九个参数组成的模型的 c 统计量(接收者操作特征曲线下的面积)为 0.86,风险梯度为 0%-21.4%。在纳入未染色大细胞、低色素和巨红细胞的比例后,c 统计量增加到 0.89,风险梯度增加到 0.1%-29.5%。

结论

CBC 的常用参数可预测住院期间死亡率。增加低色素红细胞、巨红细胞和未染色大细胞的比例可能会提高 CBC 的预测值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验