Suppr超能文献

血液细胞差异计数离散化建模预测急诊成人患者的生存情况:一项回顾性队列研究。

Blood cell differential count discretisation modelling to predict survival in adults reporting to the emergency room: a retrospective cohort study.

机构信息

Dipartimento Emergenza Accettazione, Pronto Soccorso, Ospedale Alessandro Manzoni, Lecco, LC, Italy.

Klinik für Angiologie, UniversitätsSpital Zürich, Zurich, Switzerland.

出版信息

BMJ Open. 2023 Nov 22;13(11):e071937. doi: 10.1136/bmjopen-2023-071937.

Abstract

OBJECTIVES

To assess the survival predictivity of baseline blood cell differential count (BCDC), discretised according to two different methods, in adults visiting an emergency room (ER) for illness or trauma over 1 year.

DESIGN

Retrospective cohort study of hospital records.

SETTING

Tertiary care public hospital in northern Italy.

PARTICIPANTS

11 052 patients aged >18 years, consecutively admitted to the ER in 1 year, and for whom BCDC collection was indicated by ER medical staff at first presentation.

PRIMARY OUTCOME

Survival was the referral outcome for explorative model development. Automated BCDC analysis at baseline assessed haemoglobin, mean cell volume (MCV), red cell distribution width (RDW), platelet distribution width (PDW), platelet haematocrit (PCT), absolute red blood cells, white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, basophils and platelets. Discretisation cut-offs were defined by benchmark and tailored methods. Benchmark cut-offs were stated based on laboratory reference values (Clinical and Laboratory Standards Institute). Tailored cut-offs for linear, sigmoid-shaped and U-shaped distributed variables were discretised by maximally selected rank statistics and by optimal-equal HR, respectively. Explanatory variables (age, gender, ER admission during SARS-CoV2 surges and in-hospital admission) were analysed using Cox multivariable regression. Receiver operating curves were drawn by summing the Cox-significant variables for each method.

RESULTS

Of 11 052 patients (median age 67 years, IQR 51-81, 48% female), 59% (n=6489) were discharged and 41% (n=4563) were admitted to the hospital. After a 306-day median follow-up (IQR 208-417 days), 9455 (86%) patients were alive and 1597 (14%) deceased. Increased HRs were associated with age >73 years (HR=4.6, 95% CI=4.0 to 5.2), in-hospital admission (HR=2.2, 95% CI=1.9 to 2.4), ER admission during SARS-CoV2 surges (Wave I: HR=1.7, 95% CI=1.5 to 1.9; Wave II: HR=1.2, 95% CI=1.0 to 1.3). Gender, haemoglobin, MCV, RDW, PDW, neutrophils, lymphocytes and eosinophil counts were significant overall. Benchmark-BCDC model included basophils and platelet count (area under the ROC (AUROC) 0.74). Tailored-BCDC model included monocyte counts and PCT (AUROC 0.79).

CONCLUSIONS

Baseline discretised BCDC provides meaningful insight regarding ER patients' survival.

摘要

目的

评估根据两种不同方法离散的基线血细胞差异计数(BCDC)在 1 年以上因疾病或外伤就诊于急诊室(ER)的成年人中的生存预测能力。

设计

医院记录的回顾性队列研究。

地点

意大利北部的三级保健公立医院。

参与者

11052 名年龄大于 18 岁的患者,连续 1 年在 ER 就诊,并且 ER 医务人员在首次就诊时表明需要采集 BCDC。

主要结局

生存是探索性模型开发的参考结果。基线时的自动 BCDC 分析评估了血红蛋白、平均细胞体积(MCV)、红细胞分布宽度(RDW)、血小板分布宽度(PDW)、血小板血细胞比容(PCT)、绝对红细胞、白细胞、中性粒细胞、淋巴细胞、单核细胞、嗜酸性粒细胞、嗜碱性粒细胞和血小板。离散截止值通过基准和定制方法定义。基准截止值基于实验室参考值(临床和实验室标准协会)。对于线性、S 形和 U 形分布变量,通过最大选择秩统计和最佳相等 HR 分别对定制截止值进行离散化。使用 Cox 多变量回归分析解释变量(年龄、性别、SARS-CoV2 激增期间和住院期间的 ER 入院)。为每种方法绘制了接收者操作曲线,方法是将 Cox 显著变量相加。

结果

在 11052 名患者中(中位数年龄 67 岁,IQR 51-81,48%为女性),59%(n=6489)出院,41%(n=4563)住院。在中位数为 306 天的随访(IQR 208-417 天)后,9455 名(86%)患者存活,1597 名(14%)死亡。较高的 HR 与年龄>73 岁(HR=4.6,95%CI=4.0 至 5.2)、住院(HR=2.2,95%CI=1.9 至 2.4)、SARS-CoV2 激增期间的 ER 入院(波 I:HR=1.7,95%CI=1.5 至 1.9;波 II:HR=1.2,95%CI=1.0 至 1.3)相关。性别、血红蛋白、MCV、RDW、PDW、中性粒细胞、淋巴细胞和嗜酸性粒细胞计数总体上均有意义。基准-BCDC 模型包括嗜碱性粒细胞和血小板计数(ROC 下面积(AUROC)为 0.74)。定制-BCDC 模型包括单核细胞计数和 PCT(AUROC 为 0.79)。

结论

基线离散 BCDC 为 ER 患者的生存提供了有意义的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b1f/10668290/5dc25cc3561e/bmjopen-2023-071937f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验