Suppr超能文献

使用二维电子化物作为持久电子供体增强光氧化还原催化作用。

Boosting Photoredox Catalysis Using a Two-Dimensional Electride as a Persistent Electron Donor.

作者信息

Heo Seunga, Chun Yu Sung, Bang Joonho, Hwang Ho Seong, Hwang Sanju, Kim Sonam, Cho Eun Jin, Kim Sung Wng, You Youngmin

机构信息

Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea.

Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2021 Sep 15;13(36):42880-42888. doi: 10.1021/acsami.1c12363. Epub 2021 Aug 31.

Abstract

Electrides, which have excess anionic electrons, are solid-state sources of solvated electrons that can be used as powerful reducing agents for organic syntheses. However, the abrupt decomposition of electrides in organic solvents makes controlling the transfer inefficient, thereby limiting the utilization of their superior electron-donating ability. Here, we demonstrate the efficient reductive transformation strategy which combines the stable two-dimensional [GdC]·2e electride electron donor and cyclometalated Pt(II) complex photocatalysts. Strongly localized anionic electrons at the interlayer space in the [GdC]·2e electride are released via moderate alcoholysis in 2,2,2-trifluoroethanol, enabling persistent electron donation. The Pt(II) complexes are adsorbed onto the surface of the [GdC]·2e electride and rapidly capture the released electrons at a rate of 10 s upon photoexcitation. The one-electron-reduced Pt complex is electrochemically stable enough to deliver the electron to substrates in the bulk, which completes the photoredox cycle. The key benefit of this system is the suppression of undesirable charge recombination because back electron transfer is prohibited due to the irreversible disruption of the electride after the electron transfer. These desirable properties collectively serve as the photoredox catalysis principle for the reductive generation of the benzyl radical from benzyl halide, which is the key intermediate for dehalogenated or homocoupled products.

摘要

电子化物含有过量的阴离子电子,是溶剂化电子的固态来源,可用作有机合成中的强还原剂。然而,电子化物在有机溶剂中的突然分解使得电子转移的控制效率低下,从而限制了其卓越给电子能力的利用。在此,我们展示了一种高效的还原转化策略,该策略将稳定的二维[GdC]·2e电子化物电子供体与环金属化的Pt(II)配合物光催化剂相结合。[GdC]·2e电子化物层间空间中强烈局域化的阴离子电子通过在2,2,2-三氟乙醇中的适度醇解而释放,从而实现持续的电子给予。Pt(II)配合物吸附在[GdC]·2e电子化物的表面,并在光激发后以10 s的速率迅速捕获释放的电子。单电子还原的Pt配合物在电化学上足够稳定,能够将电子传递到本体中的底物上,从而完成光氧化还原循环。该体系的关键优势在于抑制了不期望的电荷复合,因为在电子转移后电子化物的不可逆破坏阻止了反向电子转移。这些理想的性质共同构成了从苄基卤化物还原生成苄基自由基的光氧化还原催化原理,苄基自由基是脱卤或均偶联产物的关键中间体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验