Kang Se Hwang, Thapa Dinesh, Regmi Binod, Ren Siyuan, Kim Young-Min, Kim Seong-Gon, Kim Sung Wng
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Research Institute of Industrial Science and Technology, Pohang 37673, Republic of Korea.
J Am Chem Soc. 2022 Mar 16;144(10):4496-4506. doi: 10.1021/jacs.1c12367. Epub 2022 Mar 3.
Electrides, which are ionic crystals composed of excess anionic electrons, are of great interest as an exotic material for fundamental research and practical applications in broad fields of science and technology. However, an inherent chemical instability under ambient conditions at room temperature has been a fatal drawback to be addressed. Here, we report that transition metal-rich monochalcogenides are an emerging class of low-dimensional electrides with excellent chemical and thermal stability in air and water at room temperature through a comprehensive exploration of theoretical prediction and experimental verification. We predict new two-dimensional (2D) electrides crystallized in hexagonal 3̅1 and 6/ structures with strong localization of anionic electrons in a dumbbell shape at the tetrahedral cavity of the interlayer space, which are distinct from the anionic electrons localized at the octahedral cavity in the hexagonal 3̅ structure of the previous 2D [CaN]·e and [YC]·2e electrides. We successfully synthesized the room-temperature stable [TiO]·2e, [TiS]·2e, [ZrS]·2e, and primary solid solution [HfSSe]·2e electrides, showing no structural degradation in air and water. Among them, we found that the synthesized [TiS]·2e and [ZrS]·2e electrides are crystallized in orthorhombic symmetry (), showing the feature of a one-dimensional (1D) electride with an anionic electron chain, which has never been reported yet. In addition to the successful finding of new 1D and 2D electrides, we discuss the self-passivation effect-driven chemical stability and the role of anionic electrons in determining the physical properties of the newly discovered electrides.
电子化物是由过量阴离子电子组成的离子晶体,作为一种奇特的材料,在基础研究以及广泛的科学技术实际应用领域中备受关注。然而,室温环境条件下固有的化学不稳定性一直是亟待解决的致命缺陷。在此,我们报告称,通过理论预测和实验验证的全面探索,富含过渡金属的单硫属化物是一类新兴的低维电子化物,在室温下于空气和水中具有优异的化学和热稳定性。我们预测了新的二维(2D)电子化物,它们以六方3̅1和6/结构结晶,阴离子电子在层间空间的四面体空腔中呈哑铃状强烈局域化,这与先前二维[CaN]·e和[YC]·2e电子化物六方3̅结构中阴离子电子在八面体空腔中的局域化情况不同。我们成功合成了室温稳定的[TiO]·2e、[TiS]·2e、[ZrS]·2e以及初级固溶体[HfSSe]·2e电子化物,它们在空气和水中均无结构降解。其中,我们发现合成的[TiS]·2e和[ZrS]·2e电子化物以正交对称()结晶,呈现出具有阴离子电子链的一维(1D)电子化物特征,这一特征此前从未被报道过。除了成功发现新的1D和2D电子化物外,我们还讨论了自钝化效应驱动的化学稳定性以及阴离子电子在决定新发现电子化物物理性质方面的作用。