Chen Huifeng, Guan Daozhao, Zhu Wenguo, Zheng Huadan, Yu Jianhui, Zhong Yongchun, Chen Zhe
Opt Lett. 2021 Sep 1;46(17):4092-4095. doi: 10.1364/OL.433332.
A high-performance photonic spin Hall effect is demonstrated in an anisotropic epsilon-near-zero (ENZ) metamaterial based on the wave-vector-varying Pancharatnam-Berry phase. The giant out-of-plane anisotropy of ENZ metamaterial induces strong spin-orbit coupling. With a small incident angle, photons with opposite spins move along opposite transverse directions gradually. After transmitting through a submicrometer thick ENZ metamaterial, the spin photons are fully separated with a spin separation of 2.7 times beam waist and transmittance of 70.1%, allowing a figure of merit up to 1.9. A practical ENZ metamaterial consisting of an Ag nanorod array is proposed, whose figure of merit is still up to 0.006. This high-performance photonic spin Hall effect provides an integrated and practical way for the development of spin-photonic devices.
基于波矢变化的潘查拉特纳姆-贝里相位,在各向异性的近零介电常数(ENZ)超材料中展示了一种高性能的光子自旋霍尔效应。ENZ超材料巨大的面外各向异性诱导了强自旋-轨道耦合。在小入射角下,具有相反自旋的光子逐渐沿相反的横向方向移动。在透过亚微米厚的ENZ超材料后,自旋光子实现了完全分离,自旋分离量为束腰的2.7倍,透过率为70.1%,品质因数高达1.9。提出了一种由银纳米棒阵列组成的实用ENZ超材料,其品质因数仍高达0.006。这种高性能的光子自旋霍尔效应为自旋光子器件的发展提供了一种集成且实用的方法。