Thomaschewski Martin, Prämassing Mike, Schill Hans-Joachim, Zenin Vladimir A, Bozhevolnyi Sergey I, Sorger Volker J, Linden Stefan
Department of Electrical & Computer Engineering, The George Washington University, 800 22nd Street NW 5000 Science & Engineering Hall, Washington, D.C. 20052, United States.
Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn, Germany.
Nano Lett. 2023 Dec 27;23(24):11447-11452. doi: 10.1021/acs.nanolett.3c02829. Epub 2023 Nov 20.
The photonic spin Hall effect, referring to the spatial separation of photons with opposite spins due to spin-orbit interactions, has enabled potential for various spin-sensitive applications and devices. Here, using scattering-type near-field scanning optical microscopy, we observe spin-orbit interactions introduced by a subwavelength semiring antenna integrated in a plasmonic circuit. Clear evidence of unidirectional excitation of surface plasmon polaritons is obtained by direct comparison of the amplitude- and phase-resolved near-field maps of the plasmonic nanocircuit under excitation with photons of opposite spin states coupled to a plasmonic nanoantenna. We present details of the antenna design and experimental methods to investigate the spatial variation of complex electromagnetic fields in a spin-sensitive plasmonic circuit. The reported findings offer valuable insights into the generation, characterization, and application of the photonic spin Hall effect in photonic integrated circuits for future and emerging spin-selective nanophotonic systems.
光子自旋霍尔效应是指由于自旋 - 轨道相互作用导致具有相反自旋的光子发生空间分离,这为各种自旋敏感应用和器件带来了潜力。在此,我们使用散射型近场扫描光学显微镜,观察了集成在等离子体电路中的亚波长半环天线引入的自旋 - 轨道相互作用。通过直接比较在与等离子体纳米天线耦合的相反自旋态光子激发下,等离子体纳米电路的幅度和相位分辨近场图,获得了表面等离激元极化激元单向激发的明确证据。我们展示了天线设计和实验方法的细节,以研究自旋敏感等离子体电路中复电磁场的空间变化。所报道的研究结果为光子自旋霍尔效应在未来新兴的自旋选择性纳米光子系统的光子集成电路中的产生、表征和应用提供了有价值的见解。