Opt Lett. 2021 Sep 1;46(17):4312-4315. doi: 10.1364/OL.434127.
Time-resolved fluorescence imaging is a key tool in biomedical applications, as it allows to non-invasively obtain functional and structural information. However, the big amount of collected data introduces challenges in both acquisition speed and processing needs. Here, we introduce a novel technique that allows to acquire a giga-voxel 4D hypercube in a fast manner while measuring only 0.03% of the dataset. The system combines two single-pixel cameras and a conventional 2D array detector working in parallel. Data fusion techniques are introduced to combine the individual 2D and 3D projections acquired by each sensor in the final high-resolution 4D hypercube, which can be used to identify different fluorophore species by their spectral and temporal signatures.
时间分辨荧光成像是生物医学应用中的一个关键工具,因为它可以非侵入性地获得功能和结构信息。然而,大量采集的数据在采集速度和处理需求方面都带来了挑战。在这里,我们介绍了一种新的技术,它可以在仅测量数据集的 0.03%的情况下快速获取千兆体素 4D 超立方体。该系统结合了两个单像素相机和一个传统的 2D 阵列探测器并行工作。引入数据融合技术来组合每个传感器采集的各个 2D 和 3D 投影,以在最终的高分辨率 4D 超立方体中识别不同的荧光团物种,这些荧光团物种可以通过其光谱和时间特征来识别。