Sahu Ankur, Blätke Mary-Ann, Szymański Jędrzej Jakub, Töpfer Nadine
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany.
Comput Struct Biotechnol J. 2021 Aug 5;19:4626-4640. doi: 10.1016/j.csbj.2021.08.004. eCollection 2021.
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
各种生物体的多组学数据集和基因组规模代谢模型的可用性为建模和分析基因型与表型关系提供了一个平台。通量平衡分析是预测基因组规模代谢模型中通量分布的主要工具,各种数据整合方法能够对特定背景下的网络行为进行建模。由于其线性性质,这个优化框架很容易扩展到多组织或多器官甚至多生物体模型。然而,数据和模型规模都可能妨碍对估计通量进行直接的生物学解释。此外,通量平衡分析在稳态下模拟代谢,因此,在其最基本的形式中,不考虑动力学或调控事件。将通量平衡分析与互补的数据分析和建模技术相结合,有可能克服这些挑战。特别是机器学习方法已成为大数据集中数据约简和选择最重要变量的首选工具。动力学模型和形式语言可用于模拟动态行为。这篇综述文章概述了将通量平衡分析与机器学习方法、动力学模型(如基于生理学的药代动力学模型)以及形式图形建模语言(如Petri网)相结合的综合研究。我们讨论了这些综合方法的数学方面和生物学应用,并概述了挑战和未来展望。