Succi Pasquale J, Dinyer Taylor K, Byrd M Travis, Voskuil Caleb C, Bergstrom Haley C
Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky.
Department of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona.
J Strength Cond Res. 2022 Dec 1;36(12):3374-3380. doi: 10.1519/JSC.0000000000004134. Epub 2021 Sep 1.
Succi, PJ, Dinyer, TK, Byrd, MT, Voskuil, CC, and Bergstrom, HC. Application of V̇ o2 to the critical power model to derive the critical V̇ o2 . J Strength Cond Res 36(12): 3374-3380, 2022-The purposes of this study were to (a) determine whether the critical power (CP) model could be applied to V̇ o2 to estimate the critical V̇ o2 (CV̇ o2 ) and (b) to compare the CV̇ o2 with the V̇ o2 at CP (V̇ o2 CP), the ventilatory threshold (VT), respiratory compensation point (RCP), and the CV̇ o2 without the V̇ o2 slow component (CV̇ o2 slow). Nine subjects performed a graded exercise test to exhaustion to determine V̇ o2 peak, VT, and RCP. The subjects performed 4 randomized, constant power output work bouts to exhaustion. The time to exhaustion (T Lim ), the total work (W Lim ), and the total volume of oxygen consumed with (TV̇ o2 ) and without the slow component (TV̇ o2 slow) were recorded during each trial. The linear regressions of the TV̇ o2 vs. T Lim , TV̇ o2 slow vs. T Lim , and W Lim vs. T Lim relationship were performed to derive the CV̇ o2 , CV̇ o2 slow, and CP, respectively. A 1-way repeated-measures analysis of variance ( p ≤ 0.05) with follow-up Sidak-Bonferroni corrected pairwise comparisons indicated that CV̇ o2 (42.49 ± 3.22 ml·kg -1 ·min -1 ) was greater than VT (30.80 ± 4.66 ml·kg -1 ·min -1 ; p < 0.001), RCP (36.74 ± 4.49 ml·kg -1 ·min -1 ; p = 0.001), V̇ o2 CP (36.76 ± 4.31 ml·kg -1 ·min -1 ; p < 0.001), and CV̇ o2 slow (38.26 ± 2.43 ml·kg -1 ·min -1 ; p < 0.001). However, CV̇ o2 slow was not different than V̇ o2 CP ( p = 0.140) or RCP ( p = 0.235). Thus, the CP model can be applied to V̇ o2 to derive the CV̇ o2 and theoretically is the highest metabolic steady state that can be maintained for an extended period without fatigue. Furthermore, the ability of the CV̇ o2 to quantify the metabolic cost of exercise and the inefficiency associated with the V̇ o2 slow component may provide a valuable tool for researchers and coaches to examine endurance exercise.
苏奇、PJ、丁耶尔、TK、伯德、MT、沃斯奎尔、CC和伯格斯特龙、HC。将摄氧量应用于临界功率模型以推导临界摄氧量。《力量与体能研究杂志》36(12): 3374 - 3380, 2022年。本研究的目的是:(a)确定临界功率(CP)模型是否可应用于摄氧量以估计临界摄氧量(CV̇o2);(b)比较CV̇o2与CP时的摄氧量(V̇o2 CP)、通气阈值(VT)、呼吸补偿点(RCP)以及无摄氧量慢成分时的CV̇o2 (CV̇o2 slow)。九名受试者进行了递增运动测试直至力竭,以确定摄氧量峰值、VT和RCP。受试者进行了4次随机、恒定功率输出的运动直至力竭。每次测试期间记录力竭时间(T Lim)、总功(W Lim)以及有慢成分时的总耗氧量(TV̇o2)和无慢成分时的总耗氧量(TV̇o2 slow)。分别对TV̇o2与T Lim、TV̇o2 slow与T Lim以及W Lim与T Lim的关系进行线性回归,以推导CV̇o2、CV̇o2 slow和CP。采用单因素重复测量方差分析(p≤0.05)并进行后续的Sidak - Bonferroni校正成对比较,结果表明CV̇o2(42.49±3.22毫升·千克-1·分钟-1)大于VT(30.80±4.66毫升·千克-1·分钟-1;p<0.001)、RCP(36.74±4.49毫升·千克-1·分钟-1;p = 0.001)、V̇o2 CP(36.76±4.31毫升·千克-1·分钟-1;p<0.001)和CV̇o2 slow(38.26±2.43毫升·千克-1·分钟-1;p<0.001)。然而,CV̇o2 slow与V̇o2 CP(p = 0.140)或RCP(p = 0.235)无差异。因此,CP模型可应用于摄氧量以推导CV̇o2,并且理论上是在无疲劳情况下可长时间维持的最高代谢稳态。此外,CV̇o2量化运动代谢成本以及与摄氧量慢成分相关的低效性的能力,可能为研究人员和教练研究耐力运动提供一个有价值的工具。