Suppr超能文献

行为因素对调查偏差的影响:个性、感知风险和设备属性的交互作用。

Behavioural drivers of survey bias: interactive effects of personality, the perceived risk and device properties.

机构信息

School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.

Manaaki Whenua-Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand.

出版信息

Oecologia. 2021 Sep;197(1):117-127. doi: 10.1007/s00442-021-05021-7. Epub 2021 Sep 3.

Abstract

Detecting small mammal species for wildlife research and management typically depends on animals deciding to engage with a device, for instance, by entering a trap. While some animals engage and are detected, others do not, and we often lack a mechanistic understanding of what drives these decisions. As trappability can be influenced by traits of personality, personality has high potential to similarly influence detection success for non-capture devices (chew-track cards, tracking tunnels, etc.). We present a conceptual model of the detection process where animal behaviours which are detected by different devices are grouped into tiers based on the degree of intimacy with a device (e.g., approach, interact, enter). Each tier is associated with an increase in the perceived danger of engaging with a device, and an increase in the potential for personality bias. To test this model, we first surveyed 36 populations of free-living black rats (Rattus rattus), a global pest species, to uniquely mark individuals (n = 128) and quantify personality traits. We then filmed rat behaviour at novel tracking tunnels with different risk-reward treatments. As predicted, detection biases were driven by personality, the bias increased with each tier and differed between the risk treatments. Our findings suggest that personality biases are not limited to live-capture traps but are widespread across devices which detect specific animal behaviours. In showing that biases can be predictable, we also show biases can be managed. We recommend that studies involving small mammal sampling report on steps taken to manage a personality-driven bias.

摘要

检测野生动物研究和管理中的小型哺乳动物物种通常依赖于动物决定与设备互动,例如进入陷阱。虽然有些动物会参与并被检测到,但有些动物不会,我们通常缺乏对驱动这些决策的机制的理解。由于易捕性可能受到个性特征的影响,个性很可能同样会影响非捕获设备(咀嚼追踪卡、追踪隧道等)的检测成功率。我们提出了一个检测过程的概念模型,其中不同设备检测到的动物行为根据与设备的亲密程度(例如,接近、互动、进入)分为不同的层次。每个层次都与与设备互动的感知危险程度增加有关,并且与个性偏见的潜在可能性增加有关。为了验证这个模型,我们首先对 36 个自由生活的黑鼠(Rattus rattus)种群进行了调查,这是一种全球性的害虫物种,对个体进行了独特标记(n=128)并量化了个性特征。然后,我们在具有不同风险回报处理的新型跟踪隧道中拍摄了老鼠的行为。正如预测的那样,检测偏差是由个性驱动的,偏差随着层次的增加而增加,并且在风险处理之间存在差异。我们的研究结果表明,个性偏差不仅限于活体捕获陷阱,而是广泛存在于检测特定动物行为的设备中。通过表明偏差是可以预测的,我们还表明偏差是可以管理的。我们建议涉及小型哺乳动物采样的研究报告为管理个性驱动的偏差而采取的步骤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验