Suppr超能文献

脑白质水力渗透系数的微观结构起源

On the microstructural origin of brain white matter hydraulic permeability.

机构信息

Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan 20133, Italy.

Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2105328118.

Abstract

Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue, as in Convection-Enhanced Delivery procedures. The proposed research analyzes the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of electron microscopy images. We cut the two volumes with 20 equally spaced planes distributed along two perpendicular directions, and, on each plane, we computed the corresponding permeability vector. Then, we considered that the WM structure is mainly composed of elongated and parallel axons, and, using a principal component analysis, we defined two principal directions, parallel and perpendicular, with respect to the axons' main direction. The latter were used to define a reference frame onto which the permeability vectors were projected to finally obtain the permeability along the parallel and perpendicular directions. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio of about two in both the WM structures analyzed, thus demonstrating their anisotropic behavior. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that the WM heterogeneity should also be considered when modeling drug transport in the brain. Our findings, which demonstrate and quantify the anisotropic and heterogeneous character of the WM, represent a fundamental contribution not only for drug-delivery modeling, but also for shedding light on the interstitial transport mechanisms in the extracellular space.

摘要

脑微观结构在驱动药物分子直接向脑组织输送方面起着关键作用,如在对流增强递送过程中。拟议的研究分析了两种白质(胼胝体和穹窿)的水力渗透性,其三维微观结构是从电子显微镜图像的获取开始重建的。我们沿着两个垂直方向将两个体积切成 20 个等距的平面,并在每个平面上计算相应的渗透性向量。然后,我们认为 WM 结构主要由拉长和平行的轴突组成,并使用主成分分析定义了两个与轴突主方向平行和垂直的主方向。后两个方向用于定义一个参考框架,将渗透性向量投影到该框架上,最终得到平行和垂直方向的渗透性。结果表明,平行和垂直渗透性之间存在统计学上的显著差异,在分析的两种 WM 结构中,比例约为 2,从而证明了它们的各向异性行为。此外,我们还发现胼胝体和穹窿之间的渗透性存在显著差异,这表明在脑内药物输送建模时还应考虑 WM 的异质性。我们的研究结果不仅证明和量化了 WM 的各向异性和异质性特征,为药物输送建模提供了基础,而且还为阐明细胞外空间中间质传输机制提供了启示。

相似文献

3
A computational fluid dynamics approach to determine white matter permeability.一种计算流体动力学方法来确定脑白质的渗透性。
Biomech Model Mechanobiol. 2019 Aug;18(4):1111-1122. doi: 10.1007/s10237-019-01131-7. Epub 2019 Feb 20.
7
The direction-dependence of apparent water exchange rate in human white matter.人脑白质表观水交换率的各向异性。
Neuroimage. 2022 Feb 15;247:118831. doi: 10.1016/j.neuroimage.2021.118831. Epub 2021 Dec 17.
9
Microscale characterisation of the time-dependent mechanical behaviour of brain white matter.脑白质的时变力学行为的微观特性研究。
J Mech Behav Biomed Mater. 2022 Jan;125:104917. doi: 10.1016/j.jmbbm.2021.104917. Epub 2021 Oct 19.

引用本文的文献

2

本文引用的文献

6
Automated 3D Axonal Morphometry of White Matter.自动化三维白质轴突形态计量学。
Sci Rep. 2019 Apr 15;9(1):6084. doi: 10.1038/s41598-019-42648-2.
8
A computational fluid dynamics approach to determine white matter permeability.一种计算流体动力学方法来确定脑白质的渗透性。
Biomech Model Mechanobiol. 2019 Aug;18(4):1111-1122. doi: 10.1007/s10237-019-01131-7. Epub 2019 Feb 20.
9
FCNN-based axon segmentation for convection-enhanced delivery optimization.基于 FCNN 的轴突分割用于对流增强递送的优化。
Int J Comput Assist Radiol Surg. 2019 Mar;14(3):493-499. doi: 10.1007/s11548-018-01911-z. Epub 2019 Jan 7.
10
Effective Diffusion and Tortuosity in Brain White Matter.脑白质中的有效扩散与曲折度
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4901-4904. doi: 10.1109/EMBC.2018.8513443.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验