Suppr超能文献

基于结构的虚拟筛选、计算机对接、ADME 性质预测和分子动力学研究,以鉴定针对 SARS-CoV-2 M 的潜在抑制剂。

Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 M.

机构信息

Department of Biotechnology, Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu, 637 003, India.

Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA.

出版信息

Mol Divers. 2022 Jun;26(3):1645-1661. doi: 10.1007/s11030-021-10298-0. Epub 2021 Sep 4.

Abstract

COVID-19 is a viral pandemic caused by SARS-CoV-2. Due to its highly contagious nature, millions of people are getting affected worldwide knocking down the delicate global socio-economic equilibrium. According to the World Health Organization, COVID-19 has affected over 186 million people with a mortality of around 4 million as of July 09, 2021. Currently, there are few therapeutic options available for COVID-19 control. The rapid mutations in SARS-CoV-2 genome and development of new virulent strains with increased infection and mortality among COVID-19 patients, there is a great need to discover more potential drugs for SARS-CoV-2 on a priority basis. One of the key viral enzymes responsible for the replication and maturation of SARS-CoV-2 is M protein. In the current study, structure-based virtual screening was used to identify four potential ligands against SARS-CoV-2 M from a set of 8,722 ASINEX library compounds. These four compounds were evaluated using ADME filter to check their ADME profile and druggability, and all the four compounds were found to be within the current pharmacological acceptable range. They were individually docked to SARS-CoV-2 M protein to assess their molecular interactions. Further, molecular dynamics (MD) simulations was carried out on protein-ligand complex using Desmond at 100 ns to explore their binding conformational stability. Based on RMSD, RMSF and hydrogen bond interactions, it was found that the stability of protein-ligand complex was maintained throughout the entire 100 ns simulations for all the four compounds. Some of the key ligand amino acid residues participated in stabilizing the protein-ligand interactions includes GLN 189, SER 10, GLU 166, ASN 142 with PHE 66 and TRP 132 of SARS-CoV-2 M. Further optimization of these compounds could lead to promising drug candidates for SARS-CoV-2 M target.

摘要

新型冠状病毒病(COVID-19)是由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的病毒性大流行。由于其高度传染性,全世界数以百万计的人受到影响,打破了全球微妙的社会经济平衡。根据世界卫生组织(WHO)的数据,截至 2021 年 7 月 9 日,COVID-19 已影响超过 1.86 亿人,死亡人数约为 400 万。目前,针对 COVID-19 控制,可用的治疗方法有限。SARS-CoV-2 基因组的快速突变以及新的高毒力毒株的出现,导致 COVID-19 患者的感染和死亡率增加,因此急需优先发现针对 SARS-CoV-2 的更多潜在药物。负责 SARS-CoV-2 复制和成熟的关键病毒酶之一是 M 蛋白。在本研究中,使用基于结构的虚拟筛选从 8722 个 ASINEX 文库化合物中鉴定出针对 SARS-CoV-2 M 的四个潜在配体。使用 ADME 筛选器评估这四种化合物,以检查其 ADME 概况和可药性,发现这四种化合物均在当前药理学可接受范围内。分别将它们对接至 SARS-CoV-2 M 蛋白,以评估它们的分子相互作用。进一步使用 Desmond 在 100ns 进行蛋白-配体复合物的分子动力学(MD)模拟,以探索它们的结合构象稳定性。基于 RMSD、RMSF 和氢键相互作用,发现所有四种化合物的蛋白-配体复合物在整个 100ns 模拟过程中均保持稳定。一些关键的配体氨基酸残基参与稳定蛋白-配体相互作用,包括 SARS-CoV-2 M 的 GLN189、SER10、GLU166、ASN142 与 PHE66 和 TRP132。这些化合物的进一步优化可能会导致针对 SARS-CoV-2 M 靶标的有前途的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be5/8417657/f2e772d01b76/11030_2021_10298_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验