Mittermair Sandra, Lakatos Gergely, Nicoletti Cecilia, Ranglová Karolína, Manoel João Câmara, Grivalský Tomáš, Kozhan Daniyar Malikuly, Masojídek Jiří, Richter Juliane
Department of Biology and Chemistry, AG Biosciences, University of Applied Sciences Upper Austria, Roseggerstraße 15, 4600 Wels, Austria.
Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Algal Biotechnology, Novohradská 237 - Opatovický mlýn, 37901 Třeboň, Czech Republic.
J Biotechnol. 2021 Nov 10;340:47-56. doi: 10.1016/j.jbiotec.2021.08.012. Epub 2021 Sep 2.
Low production rates are still one limiting factor for the industrial climate-neutral production of biovaluable compounds in cyanobacteria. Next to optimized cultivation conditions, new production strategies are required. Hence, the use of established molecular tools could lead to increased product yields in the cyanobacterial model organism Synechocystis sp. PCC6803. Its main storage compound glycogen was chosen to be increased by the use of these tools. In this study, the three genes glgC, glgA1 and glgA2, which are part of the glycogen synthesis pathway, were combined with the P promoter and the neutral cloning site NSC1. The complete genome integration, protein formation, biomass production and glycogen accumulation were determined to select the most productive transformants. The overexpression of glgA2 did not increase the biomass or glycogen production in short-term trials compared to the other two genes but caused transformants death in long-term trials. The transformants glgA1_11 and glgC_2 showed significantly increased biomass (1.6-fold - 1.7-fold) and glycogen production (3.5-fold - 4-fold) compared to the wild type after 96 h making them a promising energy source for further applications. Those could include for example a two-stage production process, with first energy production (glycogen) and second increased product formation (e.g. ethanol).
低生产率仍然是蓝藻中生物活性化合物进行工业气候中和生产的一个限制因素。除了优化培养条件外,还需要新的生产策略。因此,使用成熟的分子工具可能会提高蓝藻模式生物聚球藻属PCC6803中的产品产量。选择通过使用这些工具来增加其主要储存化合物糖原。在本研究中,糖原合成途径中的三个基因glgC、glgA1和glgA2与P启动子和中性克隆位点NSC1相结合。测定了完整的基因组整合、蛋白质形成、生物量生产和糖原积累,以选择最具生产性的转化体。与其他两个基因相比,在短期试验中,glgA2的过表达并未增加生物量或糖原产量,但在长期试验中导致转化体死亡。与野生型相比,转化体glgA1_11和glgC_2在96小时后生物量显著增加(1.6倍至1.7倍),糖原产量显著增加(3.5倍至4倍),使其成为进一步应用的有前景的能源。这些应用例如可以包括一个两阶段生产过程,首先是能源生产(糖原),其次是增加产品形成(例如乙醇)。