Laboratory for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, UK.
School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, M6-13, Meguro, Tokyo 152-8550, Japan.
J Struct Biol. 2021 Dec;213(4):107792. doi: 10.1016/j.jsb.2021.107792. Epub 2021 Sep 2.
Half-turns are shown to be the main determinants of many experimental Alzheimer's Aβ fibril structures. Fibril structures contain three half-turn types, βαβ, βαβ and βεβ which each result in a ∼90° bend in a β-strand. It is shown that only these half-turns enable cross-β stacking and thus the right-angle fold seen in fibrils is an intrinsic feature of cross-β. Encoding a strand as a conformational sequence in β, α, α and ε(β), pairwise combination rules for consecutive half-turns are used to decode this sequence to give the backbone path. This reveals how structures would be dramatically affected by a deletion. Using a wild-type Aβ(42) fibril structure and the pairwise combination rules, the Osaka deletion is predicted to result in exposure of surfaces that are mutually shielding from the solvent. Molecular dynamics simulations on an 11-mer β-sheet of Alzheimer's Aβ(40) of the Dutch (E22Q), Iowa (D23N), Arctic (E22G), and Osaka (E22Δ) mutants, show the crucial role glycine plays in the positioning of βαβ half-turns. Their "in-phase" positions along the sequence in the wild-type, Dutch mutant and Iowa mutant means that the half-folds all fold to the same side creating the same closed structure. Their out-of-phase positions in Arctic and Osaka mutants creates a flatter structure in the former and an S-shape structure in the latter which, as predicted, exposes surfaces on the inside in the closed wild-type to the outside. This is consistent with the gain of interaction model and indicates how domain swapping might explain the Osaka mutant's unique properties.
半转角被证明是许多实验性阿尔茨海默病 Aβ 纤维结构的主要决定因素。纤维结构包含三种半转角类型,βαβ、βαβ 和 βεβ,它们各自导致β-链的 90°弯曲。研究表明,只有这些半转角才能实现交叉-β 堆叠,因此纤维中看到的直角折叠是交叉-β 的固有特征。将链编码为β、α、α 和 ε(β)中的构象序列,使用连续半转角的成对组合规则对该序列进行解码,以给出主链路径。这揭示了结构会如何受到缺失的显著影响。使用野生型 Aβ(42)纤维结构和成对组合规则,预测大阪缺失会导致相互屏蔽溶剂的表面暴露。对阿尔茨海默病 Aβ(40)的 11 -mer β-片层的分子动力学模拟,荷兰(E22Q)、爱荷华(D23N)、北极(E22G)和大阪(E22Δ)突变体,表明甘氨酸在 βαβ 半转角定位中起着至关重要的作用。它们在野生型、荷兰突变体和爱荷华突变体中沿着序列的“同相”位置意味着所有的半折叠都折叠到同一侧,形成相同的封闭结构。它们在北极和大阪突变体中的“反相”位置在前一种情况下产生更平坦的结构,在后一种情况下产生 S 形结构,正如预测的那样,在封闭的野生型中,内部表面暴露在外部。这与获得的相互作用模型一致,并表明结构域交换如何解释大阪突变体的独特特性。