Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
Department of Pharmaceutical Chemistry, University of California, San Francisco , San Francisco, California 94158, United States.
J Am Chem Soc. 2016 Aug 10;138(31):9840-52. doi: 10.1021/jacs.6b03715. Epub 2016 Jul 28.
The amyloid-β (Aβ) peptide of Alzheimer's disease (AD) forms polymorphic fibrils on the micrometer and molecular scales. Various fibril growth conditions have been identified to cause polymorphism, but the intrinsic amino acid sequence basis for this polymorphism has been unclear. Several single-site mutations in the center of the Aβ sequence cause different disease phenotypes and fibrillization properties. The E22G (Arctic) mutant is found in familial AD and forms protofibrils more rapidly than wild-type Aβ. Here, we use solid-state NMR spectroscopy to investigate the structure, dynamics, hydration and morphology of Arctic E22G Aβ40 fibrils. (13)C, (15)N-labeled synthetic E22G Aβ40 peptides are studied and compared with wild-type and Osaka E22Δ Aβ40 fibrils. Under the same fibrillization conditions, Arctic Aβ40 exhibits a high degree of polymorphism, showing at least four sets of NMR chemical shifts for various residues, while the Osaka and wild-type Aβ40 fibrils show a single or a predominant set of chemical shifts. Thus, structural polymorphism is intrinsic to the Arctic E22G Aβ40 sequence. Chemical shifts and inter-residue contacts obtained from 2D correlation spectra indicate that one of the major Arctic conformers has surprisingly high structural similarity with wild-type Aβ42. (13)C-(1)H dipolar order parameters, (1)H rotating-frame spin-lattice relaxation times and water-to-protein spin diffusion experiments reveal substantial differences in the dynamics and hydration of Arctic, Osaka and wild-type Aβ40 fibrils. Together, these results strongly suggest that electrostatic interactions in the center of the Aβ peptide sequence play a crucial role in the three-dimensional fold of the fibrils, and by inference, fibril-induced neuronal toxicity and AD pathogenesis.
阿尔茨海默病(AD)的淀粉样蛋白-β(Aβ)肽在微米和分子尺度上形成多态性纤维。已经确定了各种纤维生长条件会导致多态性,但这种多态性的内在氨基酸序列基础尚不清楚。Aβ序列中心的几个单点突变导致不同的疾病表型和纤维形成特性。E22G(北极)突变体存在于家族性 AD 中,比野生型 Aβ更快地形成原纤维。在这里,我们使用固态 NMR 光谱学研究北极 E22G Aβ40 纤维的结构、动力学、水合作用和形态。(13)C、(15)N 标记的合成 E22G Aβ40 肽进行了研究,并与野生型和大阪 E22Δ Aβ40 纤维进行了比较。在相同的纤维形成条件下,北极 Aβ40 表现出高度的多态性,显示出各种残基的至少四组 NMR 化学位移,而大阪和野生型 Aβ40 纤维显示一组或主要的化学位移。因此,结构多态性是北极 E22G Aβ40 序列的固有特性。从 2D 相关谱获得的化学位移和残基间接触表明,北极的主要构象之一与野生型 Aβ42 具有惊人的高结构相似性。(13)C-(1)H 偶极顺序参数、(1)H 旋转框架自旋晶格弛豫时间和水到蛋白质的自旋扩散实验揭示了北极、大阪和野生型 Aβ40 纤维在动力学和水合作用方面的显著差异。这些结果强烈表明,Aβ 肽序列中心的静电相互作用在纤维的三维折叠中起着至关重要的作用,并且可以推断出纤维诱导的神经元毒性和 AD 发病机制。