Suppr超能文献

利用人类肠道微生物组数据和随机森林算法预测死后间隔时间。

Predicting the postmortem interval using human intestinal microbiome data and random forest algorithm.

作者信息

Hu Lai, Xing Yu, Jiang Pu, Gan Li, Zhao Fan, Peng Wenli, Li Weihan, Tong Yanqiu, Deng Shixiong

机构信息

Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China.

Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing 400016, China; School of Humanities, Chongqing Jiaotong University, #66 Xuefu Road, Chongqing 400016, China.

出版信息

Sci Justice. 2021 Sep;61(5):516-527. doi: 10.1016/j.scijus.2021.06.006. Epub 2021 Jun 25.

Abstract

Gradual changes in microbial communities in a human body after death can be used to determine postmortem interval (PMI). In this study, gut microflora samples were collected from the vermiform appendix and the transverse colon of human cadavers with PMIs between 5 and 192 h. The results revealed that the appendix might be an excellent intestinal sampling site and the appendix flora had an inferred succession rule during human body decomposition. Firmicutes, Bacteroidetes, and their respective subclasses showed a predictable successionrule in relative abundance over time. A Random Forest regression model was developed to correlate human gut microbiota with PMI. We believe that our findings have increased the knowledge of the composition and abundance of the gut microbiota in human corpses, and suggest that the use of the human appendix microbial succession may be a potential method for forensic estimation of the time of death.

摘要

人体死后微生物群落的逐渐变化可用于确定死后间隔时间(PMI)。在本研究中,从PMI在5至192小时之间的人类尸体的阑尾和横结肠采集了肠道微生物群样本。结果表明,阑尾可能是一个极佳的肠道采样部位,并且阑尾菌群在人体分解过程中具有推断出的演替规律。厚壁菌门、拟杆菌门及其各自的亚类在相对丰度上随时间呈现出可预测的演替规律。建立了一个随机森林回归模型来关联人类肠道微生物群与PMI。我们相信,我们的研究结果增加了对人类尸体中肠道微生物群组成和丰度的了解,并表明利用人类阑尾微生物演替可能是法医估计死亡时间的一种潜在方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验