Suppr超能文献

具有时间编码的脉冲自动编码器

Spiking Autoencoders With Temporal Coding.

作者信息

Comşa Iulia-Maria, Versari Luca, Fischbacher Thomas, Alakuijala Jyrki

机构信息

Google Research, Zürich, Switzerland.

出版信息

Front Neurosci. 2021 Aug 13;15:712667. doi: 10.3389/fnins.2021.712667. eCollection 2021.

Abstract

Spiking neural networks with temporal coding schemes process information based on the relative timing of neuronal spikes. In supervised learning tasks, temporal coding allows learning through backpropagation with exact derivatives, and achieves accuracies on par with conventional artificial neural networks. Here we introduce spiking autoencoders with temporal coding and pulses, trained using backpropagation to store and reconstruct images with high fidelity from compact representations. We show that spiking autoencoders with a single layer are able to effectively represent and reconstruct images from the neuromorphically-encoded MNIST and FMNIST datasets. We explore the effect of different spike time target latencies, data noise levels and embedding sizes, as well as the classification performance from the embeddings. The spiking autoencoders achieve results similar to or better than conventional non-spiking autoencoders. We find that inhibition is essential in the functioning of the spiking autoencoders, particularly when the input needs to be memorised for a longer time before the expected output spike times. To reconstruct images with a high target latency, the network learns to accumulate negative evidence and to use the pulses as excitatory triggers for producing the output spikes at the required times. Our results highlight the potential of spiking autoencoders as building blocks for more complex biologically-inspired architectures. We also provide open-source code for the model.

摘要

采用时间编码方案的脉冲神经网络基于神经元脉冲的相对时间来处理信息。在监督学习任务中,时间编码允许通过具有精确导数的反向传播进行学习,并实现与传统人工神经网络相当的准确率。在此,我们引入了具有时间编码和脉冲的脉冲自动编码器,其通过反向传播进行训练,以从紧凑表示中高保真地存储和重建图像。我们表明,单层脉冲自动编码器能够有效地从神经形态编码的MNIST和FMNIST数据集中表示和重建图像。我们探讨了不同脉冲时间目标延迟、数据噪声水平和嵌入大小的影响,以及来自嵌入的分类性能。脉冲自动编码器取得了与传统非脉冲自动编码器相似或更好的结果。我们发现抑制在脉冲自动编码器的功能中至关重要,特别是当输入需要在预期输出脉冲时间之前被更长时间记忆时。为了以高目标延迟重建图像,网络学会积累负面证据,并将脉冲用作兴奋性触发器,以便在所需时间产生输出脉冲。我们的结果突出了脉冲自动编码器作为构建更复杂的受生物启发架构的构建块的潜力。我们还提供了该模型的开源代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7048/8414972/4bb17094a778/fnins-15-712667-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验