Suppr超能文献

一种基于时间编码的多层脉冲神经网络的监督学习算法,用于面向高能效超大规模集成电路处理器设计

A Supervised Learning Algorithm for Multilayer Spiking Neural Networks Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design.

作者信息

Sakemi Yusuke, Morino Kai, Morie Takashi, Aihara Kazuyuki

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Jan;34(1):394-408. doi: 10.1109/TNNLS.2021.3095068. Epub 2023 Jan 5.

Abstract

Spiking neural networks (SNNs) are brain-inspired mathematical models with the ability to process information in the form of spikes. SNNs are expected to provide not only new machine-learning algorithms but also energy-efficient computational models when implemented in very-large-scale integration (VLSI) circuits. In this article, we propose a novel supervised learning algorithm for SNNs based on temporal coding. A spiking neuron in this algorithm is designed to facilitate analog VLSI implementations with analog resistive memory, by which ultrahigh energy efficiency can be achieved. We also propose several techniques to improve the performance on recognition tasks and show that the classification accuracy of the proposed algorithm is as high as that of the state-of-the-art temporal coding SNN algorithms on the MNIST and Fashion-MNIST datasets. Finally, we discuss the robustness of the proposed SNNs against variations that arise from the device manufacturing process and are unavoidable in analog VLSI implementation. We also propose a technique to suppress the effects of variations in the manufacturing process on the recognition performance.

摘要

脉冲神经网络(SNNs)是受大脑启发的数学模型,具有以脉冲形式处理信息的能力。当在超大规模集成(VLSI)电路中实现时,SNNs有望不仅提供新的机器学习算法,还能提供节能的计算模型。在本文中,我们提出了一种基于时间编码的新型SNNs监督学习算法。该算法中的脉冲神经元旨在通过模拟电阻式存储器促进模拟VLSI实现,从而实现超高的能量效率。我们还提出了几种提高识别任务性能的技术,并表明所提算法在MNIST和Fashion-MNIST数据集上的分类准确率与最先进的时间编码SNN算法一样高。最后,我们讨论了所提SNNs对模拟VLSI实现中因器件制造工艺而产生且不可避免的变化的鲁棒性。我们还提出了一种技术来抑制制造工艺变化对识别性能的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验