Suppr超能文献

识别与药物相关的再入院:两名学生使用工具与多学科小组的比较。

Identifying medication-related readmissions: Two students using tools vs a multidisciplinary panel.

机构信息

Department of Clinical Pharmacy, OLVG, Amsterdam, The Netherlands.

Clinical Pharmacy Research Group (CLIP), Louvain Drug Research Institute (LDRI), Pharmacy, Cliniques universitaires Saint-Luc, Université catholique de Louvain UCLouvain, Brussels, Belgium.

出版信息

Int J Clin Pract. 2021 Nov;75(11):e14768. doi: 10.1111/ijcp.14768. Epub 2021 Sep 18.

Abstract

BACKGROUND

Polypharmacy may result in medication-related readmissions (MRRs). Identifying MRRs is time consuming. Screening of readmissions by students could increase efficiency for healthcare professionals. Recently, two screening tools have been published: the Assessment Tool for identifying Hospital Admissions Related to Medications (AT-HARM10) tool and the Drug-Related Admission (DRA) adjudication guide. It is unknown whether pharmacy students could identify MRRs with these tools.

OBJECTIVE

To compare the agreement between two pharmacy students applying the AT-HARM10 tool and DRA adjudication guide in identifying MRRs vs a multidisciplinary panel.

METHODS

A retrospective study was conducted from February to July 2020 at OLVG hospital. Readmissions within 30 days after discharge from seven departments were reviewed by a multidisciplinary panel (pharmacists and physicians). MRRs were defined as readmission where medication was the main cause or medication significantly contributed to the readmission. Two 5th year pharmacy-students volunteered to blindly apply both tools individually on all MRRs and a random sample of non-MRRs. The consensus results of the students and the multidisciplinary panel were compared and displayed as a percentage and Cohen's kappa (κ).

RESULTS

Three hundred sixty-six readmission cases were selected in total, consisting of 181 MRRs and 185 non-MRRs. The agreement between the students using the AT-HARM10 tool vs the multidisciplinary panel was moderate (80%, κ = 0.60 (95% confidence interval (CI): 0.52-0.68)). The DRA adjudication guide had a moderate agreement (81%, κ = 0.62 (CI: 0.54-0.70)). Students misclassified MRRs mainly because the multidisciplinary panel found disease progression more profound than a contribution of medication.

CONCLUSIONS

Two students have an overall agreement of 80% in comparison with the multidisciplinary panel with a moderate Cohen's kappa. Students are more often overestimated, but they may be a good option to preselect potential MRRs to save time for healthcare professionals. However, some MRRs will be missed.

摘要

背景

多种药物治疗可能导致与药物相关的再入院(MRR)。识别 MRR 既耗时又费力。让学生对再入院情况进行筛查,可以提高医疗保健专业人员的工作效率。最近,已经公布了两种筛查工具:用于识别与药物相关的入院评估工具(AT-HARM10)和药物相关入院(DRA)裁决指南。尚不清楚药剂学生是否可以使用这些工具来识别 MRR。

目的

比较两名应用 AT-HARM10 工具和 DRA 裁决指南的药剂学生与多学科小组在识别 MRR 方面的一致性。

方法

这是一项回顾性研究,于 2020 年 2 月至 7 月在 OLVG 医院进行。由药剂师和医生组成的多学科小组对七个科室出院后 30 天内的再入院患者进行了审查。MRR 被定义为再入院的主要原因或药物显著导致再入院。两名五年级药剂学生自愿对所有 MRR 和随机选择的非 MRR 分别单独应用这两种工具。将学生和多学科小组的共识结果进行比较,并以百分比和 Cohen's kappa(κ)表示。

结果

总共选择了 366 例再入院病例,其中 181 例为 MRR,185 例为非 MRR。学生使用 AT-HARM10 工具与多学科小组之间的一致性为中度(80%,κ=0.60(95%置信区间(CI):0.52-0.68))。DRA 裁决指南的一致性也为中度(81%,κ=0.62(CI:0.54-0.70))。学生错误地分类了 MRR,主要是因为多学科小组认为疾病进展比药物的作用更严重。

结论

与多学科小组相比,两名学生的总体一致性为 80%,Cohen's kappa 值为中度。学生往往高估了情况,但他们可能是预先选择潜在 MRR 的一个不错的选择,可以为医疗保健专业人员节省时间。然而,有些 MRR 可能会被遗漏。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验