Suppr超能文献

基于热可逆交联的可回收、自修复和阻燃型固-固相变材料用于可持续热能存储

Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage.

作者信息

Du Xiaosheng, Jin Linzhao, Deng Sha, Zhou Mi, Du Zongliang, Cheng Xu, Wang Haibo

机构信息

College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.

The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.

出版信息

ACS Appl Mater Interfaces. 2021 Sep 15;13(36):42991-43001. doi: 10.1021/acsami.1c14862. Epub 2021 Sep 6.

Abstract

Conventional polymeric phase change materials (PCMs) exhibit good shape stability, large energy storage density, and satisfactory chemical stability, but they cannot be recycled and self-healed due to their permanent cross-linking structure. Additionally, the high flammability of organic PCMs seriously restricts their applications for thermal energy storage (TES). Therefore, it is urgently required to explore PCM composites exhibiting superior recyclability, good self-healing capability, and excellent flame retardancy simultaneously. Herein, tri-maleimide end-capped cyclotriphosphazene flame retardant (TMCTP) was synthesized via the nucleophilic substitution between 1,3,5,2,4,6-triazatriphosphorine-2,2,4,4,6,6-hexachloride and -(2-hydroxyethyl)maleimide. Then, novel dynamically cross-linked PCM composites (FPCMs) with superior recyclability, good self-healing capability, and excellent flame retardancy were fabricated by bonding PEG and TMCTP to polymeric skeleton via reversible furan/maleimide Diels-Alder (DA) reaction. TMCTP, which covalently and dynamically binding in the polymeric FPCMs, acted not only as an efficient flame retardant for reducing the flammability of PCM composites but also as dynamic cross-linking skeletons for thermally induced self-healing and recycling. Differential scanning calorimetry (DSC) analysis confirmed the reversible energy storage and release ability of FPCMs. Due to its reversible DA covalent bonds, the introduction of TMCTP endowed the FPCMs with considerably increased self-healing efficiency (up to 93.1%) and recyclability efficiency (94.6%). Moreover, with the introduction of TMCTP into FPCMs, the heat release rate (HRR) and total heat release (THR) significantly decreased, while the char residue and limiting oxygen index (LOI) value increased, confirming that the flame retardancy of FPCMs greatly improved. Hence, the synthesized FPCMs show enormous potential in TES applications.

摘要

传统的聚合物相变材料(PCM)具有良好的形状稳定性、高储能密度和令人满意的化学稳定性,但由于其永久交联结构,它们无法回收利用和自我修复。此外,有机PCM的高易燃性严重限制了它们在热能存储(TES)中的应用。因此,迫切需要探索同时具有优异可回收性、良好自我修复能力和出色阻燃性的PCM复合材料。在此,通过六氯环三磷腈与 -(2-羟乙基)马来酰亚胺之间的亲核取代反应合成了三马来酰亚胺封端的环三磷腈阻燃剂(TMCTP)。然后,通过可逆的呋喃/马来酰亚胺狄尔斯-阿尔德(DA)反应将聚乙二醇(PEG)和TMCTP键合到聚合物骨架上,制备了具有优异可回收性、良好自我修复能力和出色阻燃性的新型动态交联PCM复合材料(FPCM)。TMCTP共价且动态地结合在聚合物FPCM中,不仅作为一种有效的阻燃剂降低了PCM复合材料的易燃性,还作为动态交联骨架实现热诱导的自我修复和回收利用。差示扫描量热法(DSC)分析证实了FPCM具有可逆的能量存储和释放能力。由于其可逆的DA共价键,TMCTP的引入使FPCM的自我修复效率(高达93.1%)和可回收效率(94.6%)显著提高。此外,随着TMCTP引入FPCM中,热释放速率(HRR)和总热释放(THR)显著降低,而残炭和极限氧指数(LOI)值增加,证实FPCM的阻燃性大大提高。因此,合成的FPCM在TES应用中显示出巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验