Mac-Auliffe Diego, Chatard Benoit, Petton Mathilde, Croizé Anne-Claire, Sipp Florian, Bontemps Benjamin, Gannerie Adrien, Bertrand Olivier, Rheims Sylvain, Kahane Philippe, Lachaux Jean-Philippe
DYCOG Laboratory-Inserm U1028-CNRS UMR 5292, Lyon Neuroscience Research Center, Bron, France.
Lyon 1 Claude Bernard University, Lyon, France.
Front Behav Neurosci. 2021 Aug 19;15:640178. doi: 10.3389/fnbeh.2021.640178. eCollection 2021.
Dual-tasking is extremely prominent nowadays, despite ample evidence that it comes with a performance cost: the Dual-Task (DT) cost. Neuroimaging studies have established that tasks are more likely to interfere if they rely on common brain regions, but the precise neural origin of the DT cost has proven elusive so far, mostly because fMRI does not record neural activity directly and cannot reveal the key effect of timing, and how the spatio-temporal neural dynamics of the tasks coincide. Recently, DT electrophysiological studies in monkeys have recorded neural populations shared by the two tasks with millisecond precision to provide a much finer understanding of the origin of the DT cost. We used a similar approach in humans, with intracranial EEG, to assess the neural origin of the DT cost in a particularly challenging naturalistic paradigm which required accurate motor responses to frequent visual stimuli (task T1) and the retrieval of information from long-term memory (task T2), as when answering passengers' questions while driving. We found that T2 elicited neuroelectric interferences in the gamma-band (>40 Hz), in key regions of the T1 network including the Multiple Demand Network. They reproduced the effect of disruptive electrocortical stimulations to create a situation of dynamical incompatibility, which might explain the DT cost. Yet, participants were able to flexibly adapt their strategy to minimize interference, and most surprisingly, reduce the reliance of T1 on key regions of the executive control network-the anterior insula and the dorsal anterior cingulate cortex-with no performance decrement.
如今,多任务处理极为突出,尽管有大量证据表明它会带来性能成本:双任务(DT)成本。神经影像学研究已证实,如果任务依赖于共同的脑区,它们更有可能相互干扰,但迄今为止,DT成本的确切神经起源一直难以捉摸,主要是因为功能磁共振成像(fMRI)不能直接记录神经活动,无法揭示时间的关键作用,以及任务的时空神经动力学如何重合。最近,对猴子进行的DT电生理研究已以毫秒精度记录了两个任务共享的神经群体,以便更深入地了解DT成本的起源。我们在人类身上采用了类似的方法,即通过颅内脑电图来评估DT成本的神经起源,该研究采用了一种特别具有挑战性的自然主义范式,该范式要求对频繁的视觉刺激(任务T1)做出准确的运动反应,并从长期记忆中检索信息(任务T2),就像开车时回答乘客的问题一样。我们发现,T2在T1网络的关键区域(包括多重需求网络)中引发了γ波段(>40Hz)的神经电干扰。它们重现了破坏性皮层电刺激所产生动态不兼容的效果,这可能解释了DT成本。然而,参与者能够灵活地调整策略,以尽量减少干扰,最令人惊讶的是,在不降低表现的情况下,减少T1对执行控制网络关键区域——前岛叶和背侧前扣带回皮层的依赖。