Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China.
State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
Plant Biotechnol J. 2022 Jan;20(1):129-142. doi: 10.1111/pbi.13700. Epub 2021 Sep 14.
The medicinal plant Scutellaria baicalensis Georgi is rich in specialized 4'-deoxyflavones, which are reported to have many health-promoting properties. We assayed Scutellaria flavones with different methoxyl groups on human cancer cell lines and found that polymethoxylated 4'-deoxyflavones, like skullcapflavone I and tenaxin I have stronger ability to induce apoptosis compared to unmethylated baicalein, showing that methoxylation enhances bioactivity as well as the physical properties of specialized flavones, while having no side-effects on healthy cells. We investigated the formation of methoxylated flavones and found that two O-methyltransferase (OMT) families are active in the roots of S. baicalensis. The Type II OMTs, SbPFOMT2 and SbPFOMT5, decorate one of two adjacent hydroxyl groups on flavones and are responsible for methylation on the C6, 8 and 3'-hydroxyl positions, to form oroxylin A, tenaxin II and chrysoeriol respectively. The Type I OMTs, SbFOMT3, SbFOMT5 and SbFOMT6 account mainly for C7-methoxylation of flavones, but SbFOMT5 can also methylate baicalein on its C5 and C6-hydroxyl positions. The dimethoxylated flavone, skullcapflavone I (found naturally in roots of S. baicalensis) can be produced in yeast by co-expressing SbPFOMT5 plus SbFOMT6 when the appropriately hydroxylated 4'-deoxyflavone substrates are supplied in the medium. Co-expression of SbPFOMT5 plus SbFOMT5 in yeast produced tenaxin I, also found in Scutellaria roots. This work showed that both type I and type II OMT enzymes are involved in biosynthesis of methoxylated flavones in S. baicalensis.
黄芩是一种富含 4'-去甲黄酮的药用植物,据报道具有许多促进健康的特性。我们检测了不同甲氧基取代的黄芩黄酮在人类癌细胞系中的活性,发现多甲氧基 4'-去甲黄酮,如黄芩素 I 和千层纸素 I,比未甲基化的黄芩素具有更强的诱导细胞凋亡能力,表明甲氧基化不仅增强了特殊黄酮类化合物的生物活性,还增强了其物理性质,而对健康细胞没有副作用。我们研究了甲氧基化黄酮的形成,发现两种 O-甲基转移酶(OMT)家族在黄芩根中具有活性。II 型 OMT,SbPFOMT2 和 SbPFOMT5,在黄酮类化合物的两个相邻羟基上进行单甲基化,负责在 C6、8 和 3'-羟基位置上甲基化,分别形成汉黄芩素 A、千层纸素 II 和白杨素。I 型 OMT,SbFOMT3、SbFOMT5 和 SbFOMT6 主要负责黄酮类化合物的 C7-甲基化,但 SbFOMT5 也可以在其 C5 和 C6-羟基位置上甲基化黄芩素。二甲基化黄酮黄芩素 I(天然存在于黄芩根中)可以通过在培养基中提供适当羟基化的 4'-去甲黄酮底物,在酵母中通过共表达 SbPFOMT5 和 SbFOMT6 来产生。在酵母中表达 SbPFOMT5 和 SbPFOMT5 可以产生千层纸素 I,也存在于黄芩根中。这项工作表明,I 型和 II 型 OMT 酶都参与了黄芩中甲氧基化黄酮的生物合成。