Uppal Aastha, Kong Wilson, Rana Ashish, Wang Robert Y, Rykaczewski Konrad
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States.
Intel Corporation, 5000 W. Chandler Blvd., Chandler, Arizona 85226, United States.
ACS Appl Mater Interfaces. 2021 Sep 15;13(36):43348-43355. doi: 10.1021/acsami.1c11275. Epub 2021 Sep 7.
Polymer matrix composites containing room temperature liquid metal (LM) microdroplets offer a unique set of thermo-mechanical characteristics that makes them attractive candidates for high performance thermal interface materials. However, to achieve the desired level of the composite thermal conductivity, effective bridging of such fillers into interconnected percolation networks needs to be induced. Thermal percolation of the LM microdroplets requires two physical barriers to be overcome. First, the LM microdroplets must directly contact each other through the polymer matrix. Second, the native oxide shell on the LM microdroplet must also be ruptured. In this work, we demonstrate that both physical barriers can be penetrated to induce ample bridging of the LM microdroplets and thereby achieve higher thermal conductivity composites. We accomplish this through a synergistic combination of solid silver and LM fillers, tuning of the silicone oil "matrix" viscosity, and sample compression. We selected silver as the solid additive because it rapidly alloys with gallium to form microscale needles that could act as additional paths that aid in connecting the LM droplets. We systematically explore the impact of the composition (filler type, volume fraction, and matrix oil viscosity) and applied pressure on the thermal conductivity and multiscale structure of these composites. We reveal the microscopic mechanism underlying the macroscopic experimental trends and also identify an optimal composition of the multiphase Ag-LM-Silicone oil composite for thermal applications. The identified design knobs offer path for developing tunable LM-based polymer composites for microelectronics cooling, biomedical applications, and flexible electronics.
包含室温液态金属(LM)微滴的聚合物基复合材料具有独特的热机械特性,这使其成为高性能热界面材料的有吸引力的候选者。然而,为了达到复合材料所需的热导率水平,需要诱导此类填料有效地桥接成相互连接的渗流网络。LM微滴的热渗流需要克服两个物理障碍。首先,LM微滴必须通过聚合物基体彼此直接接触。其次,LM微滴上的天然氧化壳也必须破裂。在这项工作中,我们证明可以穿透这两个物理障碍,以诱导LM微滴充分桥接,从而获得具有更高热导率的复合材料。我们通过将固态银和LM填料协同组合、调节硅油“基体”粘度以及对样品进行压缩来实现这一点。我们选择银作为固态添加剂,因为它能迅速与镓形成微尺度的针状物,这些针状物可作为有助于连接LM微滴的额外路径。我们系统地研究了组成(填料类型、体积分数和基体油粘度)以及施加压力对这些复合材料的热导率和多尺度结构的影响。我们揭示了宏观实验趋势背后的微观机制,并确定了用于热应用的多相Ag-LM-硅油复合材料的最佳组成。所确定的设计要点为开发用于微电子冷却、生物医学应用和柔性电子的可调谐LM基聚合物复合材料提供了途径