Suppr超能文献

通过减轻多孔镓基相变材料的过冷现象实现电子设备的可持续热调节

Sustainable Thermal Regulation of Electronics via Mitigated Supercooling of Porous Gallium-Based Phase Change Materials.

作者信息

Ki Seokkan, Shin Seongjong, Cho Sumin, Bang Soosik, Choi Dongwhi, Nam Youngsuk

机构信息

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34 141, Republic of Korea.

Department of Mechanical Engineering, Kyung Hee University, Yongin, 17 104, Republic of Korea.

出版信息

Adv Sci (Weinh). 2024 Jun;11(23):e2310185. doi: 10.1002/advs.202310185. Epub 2024 Apr 18.

Abstract

Gallium liquid metal is one of the promising phase change materials for passive thermal management of electronics due to their high thermal conductivity and latent heat per volume. However, it suffers from severe supercooling, in which molten gallium does not return to solid due to the lack of nucleation. It may require 28.2 °C lower temperature than the original freezing point to address supercooling, leading to unstable thermal regulation performance along fluctuations of cooling condition. Here, gallium is infused into porous copper in an oxide-free environment, forming intermetallic compound impurities at the interfaces to reduce the activation energy for heterogeneous nucleation. The porous-shaped gallium provides ≈63% smaller supercooling than that of the bulk type due to large specific surface area (≈9,070 cm per cm) and high wetting characteristics (≈16° of contact angle) on CuGa intermetallic layer. During repetitive heating-cooling cycles, porous-shaped gallium consistently shows propagation of crystallization at even near room temperature (≈25 °C) while maintaining stable performance as thermal buffer, whereas droplet-shaped gallium is gradually degraded due to partial-supercooled state. The findings will improve the responsive thermal regulation performance to relieve a rapid increase in temperature of semiconductors/batteries, and also have a potential for energy storage applications.

摘要

镓液态金属因其高导热性和单位体积的潜热,是用于电子产品被动热管理的有前景的相变材料之一。然而,它存在严重的过冷现象,即由于缺乏成核作用,熔融的镓不会恢复为固态。解决过冷问题可能需要比原始凝固点低28.2°C的温度,这导致热调节性能随冷却条件的波动而不稳定。在此,镓在无氧化物环境中注入多孔铜中,在界面处形成金属间化合物杂质,以降低异质成核的活化能。由于大的比表面积(每平方厘米约9070平方厘米)和在CuGa金属间层上的高润湿性(接触角约16°),多孔状镓的过冷度比块状镓小约63%。在重复的加热-冷却循环中,多孔状镓即使在接近室温(约25°C)时也始终显示出结晶的传播,同时保持作为热缓冲器的稳定性能,而液滴状镓由于部分过冷状态而逐渐退化。这些发现将改善响应式热调节性能,以缓解半导体/电池温度的快速上升,并且在储能应用方面也具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b3/11186057/4d7fa1e6002b/ADVS-11-2310185-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验