Suppr超能文献

抑制立氏立克次体的一氧化氮。

Nitric Oxide Inhibition of Rickettsia rickettsii.

机构信息

Host-Parasite Interactions Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

出版信息

Infect Immun. 2021 Nov 16;89(12):e0037121. doi: 10.1128/IAI.00371-21. Epub 2021 Sep 7.

Abstract

Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is an enzootic, obligate, intracellular bacterial pathogen. Nitric oxide (NO) synthesized by the inducible NO synthase (iNOS) is a potent antimicrobial component of innate immunity and has been implicated in the control of virulent spp. in diverse cell types. In this study, we examined the antibacterial role of NO on R. rickettsii. Our results indicate that NO challenge dramatically reduces R. rickettsii adhesion through the disruption of bacterial energetics. Additionally, NO-treated R. rickettsii cells were unable to synthesize protein or replicate in permissive cells. Activated, NO-producing macrophages restricted R. rickettsii infections, but inhibition of iNOS ablated the inhibition of bacterial growth. These data indicate that NO is a potent antirickettsial effector of innate immunity that targets energy generation in these pathogenic bacteria to prevent growth and subversion of infected host cells.

摘要

落矶山斑点热的病原体立氏立克次体(Rickettsia rickettsii)是一种地方性、专性、细胞内细菌病原体。诱导型一氧化氮合酶(iNOS)合成的一氧化氮(NO)是先天免疫中一种强大的抗菌成分,并被认为在控制多种细胞类型中的毒力 spp 方面发挥作用。在这项研究中,我们研究了 NO 对立氏立克次体的抗菌作用。我们的结果表明,NO 挑战通过破坏细菌的能量代谢,显著降低了立氏立克次体的黏附能力。此外,NO 处理的立氏立克次体细胞无法在允许的细胞中合成蛋白质或复制。活化的、产生 NO 的巨噬细胞限制了立氏立克次体的感染,但抑制 iNOS 会消除对细菌生长的抑制作用。这些数据表明,NO 是先天免疫的一种强大的抗立克次体效应因子,它针对这些致病性细菌的能量产生,以防止受感染宿主细胞的生长和颠覆。

相似文献

1
Nitric Oxide Inhibition of Rickettsia rickettsii.
Infect Immun. 2021 Nov 16;89(12):e0037121. doi: 10.1128/IAI.00371-21. Epub 2021 Sep 7.
2
The Distinct Transcriptional Response of the Midgut of and Ticks to Correlates to Their Differences in Susceptibility to Infection.
Front Cell Infect Microbiol. 2017 Apr 28;7:129. doi: 10.3389/fcimb.2017.00129. eCollection 2017.
3
TRIM56-mediated production of type I interferon inhibits intracellular replication of .
Microbiol Spectr. 2024 Apr 2;12(4):e0369523. doi: 10.1128/spectrum.03695-23. Epub 2024 Feb 15.
4
Vector competence of Amblyomma americanum (Acari: Ixodidae) for Rickettsia rickettsii.
Ticks Tick Borne Dis. 2017 Jun;8(4):615-622. doi: 10.1016/j.ttbdis.2017.04.006. Epub 2017 Apr 12.
5
6
Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa.
Infect Immun. 2008 Feb;76(2):542-50. doi: 10.1128/IAI.00952-07. Epub 2007 Nov 19.
7
Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice.
Vaccine. 2014 Apr 11;32(18):2027-33. doi: 10.1016/j.vaccine.2014.02.057. Epub 2014 Feb 28.
8
Rickettsia rickettsii Co-feeding Transmission among Amblyomma aureolatum Ticks.
Emerg Infect Dis. 2018 Nov;24(11):2041-2048. doi: 10.3201/eid2411.180451.
10
Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii.
PLoS Pathog. 2020 May 18;16(5):e1008582. doi: 10.1371/journal.ppat.1008582. eCollection 2020 May.

引用本文的文献

1
Nitric Oxide Therapeutics: New Hopes for More Effective Tuberculosis Treatment Combine with Targeted and Controlled Nanotechnology.
Int J Nanomedicine. 2025 Jul 19;20:9195-9218. doi: 10.2147/IJN.S531255. eCollection 2025.
2
Differences between human and rodent nitric oxide production dictate susceptibility to tick-borne .
bioRxiv. 2025 Jun 29:2025.06.27.661835. doi: 10.1101/2025.06.27.661835.
3
4
-Host-Tick Interactions: Knowledge Advances and Gaps.
Infect Immun. 2022 Sep 15;90(9):e0062121. doi: 10.1128/iai.00621-21. Epub 2022 Aug 22.
5
Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases.
Front Cell Infect Microbiol. 2022 Jul 22;12:870398. doi: 10.3389/fcimb.2022.870398. eCollection 2022.

本文引用的文献

1
Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro.
Redox Biol. 2020 Oct;37:101734. doi: 10.1016/j.redox.2020.101734. Epub 2020 Sep 21.
2
Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii.
PLoS Pathog. 2020 May 18;16(5):e1008582. doi: 10.1371/journal.ppat.1008582. eCollection 2020 May.
3
Flavohaemoglobin: the pre-eminent nitric oxide-detoxifying machine of microorganisms.
F1000Res. 2020 Jan 8;9. doi: 10.12688/f1000research.20563.1. eCollection 2020.
4
Dr. NO and Mr. Toxic - the versatile role of nitric oxide.
Biol Chem. 2020 Apr 28;401(5):547-572. doi: 10.1515/hsz-2019-0368.
5
Anaerobic Transcription by OxyR: A Novel Paradigm for Nitrosative Stress.
Antioxid Redox Signal. 2020 Apr 20;32(12):803-816. doi: 10.1089/ars.2019.7921. Epub 2019 Dec 3.
6
The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities.
Nucleic Acids Res. 2020 Jan 8;48(D1):D606-D612. doi: 10.1093/nar/gkz943.
7
Reactive nitrogen species in host-bacterial interactions.
Curr Opin Immunol. 2019 Oct;60:96-102. doi: 10.1016/j.coi.2019.05.008. Epub 2019 Jun 12.
8
Inducible nitric oxide synthase: Regulation, structure, and inhibition.
Med Res Rev. 2020 Jan;40(1):158-189. doi: 10.1002/med.21599. Epub 2019 Jun 13.
9
Zinc-dependent substrate-level phosphorylation powers Salmonella growth under nitrosative stress of the innate host response.
PLoS Pathog. 2018 Oct 26;14(10):e1007388. doi: 10.1371/journal.ppat.1007388. eCollection 2018 Oct.
10
Reprograms Nucleotide Metabolism in Its Adaptation to Nitrosative Stress.
mBio. 2018 Feb 27;9(1):e00211-18. doi: 10.1128/mBio.00211-18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验