Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America.
Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, CA, United States of America.
PLoS Pathog. 2018 Oct 26;14(10):e1007388. doi: 10.1371/journal.ppat.1007388. eCollection 2018 Oct.
The metabolic processes that enable the replication of intracellular Salmonella under nitrosative stress conditions engendered in the innate response of macrophages are poorly understood. A screen of Salmonella transposon mutants identified the ABC-type high-affinity zinc uptake system ZnuABC as a critical determinant of the adaptation of Salmonella to the nitrosative stress generated by the enzymatic activity of inducible nitric oxide (NO) synthase of mononuclear phagocytic cells. NO limits the virulence of a znuB mutant in an acute murine model of salmonellosis. The ZnuABC transporter is crucial for the glycolytic function of fructose bisphosphate aldolase, thereby fueling growth of Salmonella during nitrosative stress produced in the innate response of macrophages. Our investigations demonstrate that glycolysis mediates resistance of Salmonella to the antimicrobial activity of NO produced in an acute model of infection. The ATP synthesized by substrate-level phosphorylation at the payoff phase of glycolysis and acetate fermentation powers the replication of Salmonella experiencing high levels of nitrosative stress. In contrast, despite its high potential for ATP synthesis, oxidative phosphorylation is a major target of inhibition by NO and contributes little to the antinitrosative defenses of intracellular Salmonella. Our investigations have uncovered a previously unsuspected conjunction between zinc homeostasis, glucose metabolism and cellular energetics in the adaptation of intracellular Salmonella to the reactive nitrogen species synthesized in the innate host response.
在巨噬细胞固有反应中产生的硝化应激条件下,能够使细胞内沙门氏菌复制的代谢过程尚未得到充分理解。沙门氏菌转座子突变体的筛选发现,ABC 型高亲和力锌摄取系统 ZnuABC 是沙门氏菌适应单核吞噬细胞中诱导型一氧化氮合酶(iNOS)产生的硝化应激的关键决定因素。NO 限制了 znuB 突变体在急性沙门氏菌病小鼠模型中的毒力。ZnuABC 转运蛋白对于果糖二磷酸醛缩酶的糖酵解功能至关重要,从而为巨噬细胞固有反应中产生的硝化应激期间沙门氏菌的生长提供燃料。我们的研究表明,糖酵解介导了沙门氏菌对急性感染模型中产生的 NO 的抗菌活性的抗性。糖酵解的收益阶段的底物水平磷酸化合成的 ATP 和乙酸盐发酵为经历高水平硝化应激的沙门氏菌的复制提供动力。相比之下,尽管氧化磷酸化具有很高的 ATP 合成潜力,但它是 NO 抑制的主要靶点,对细胞内沙门氏菌的抗硝化防御作用贡献不大。我们的研究揭示了在细胞内沙门氏菌适应固有宿主反应中合成的活性氮物种过程中,锌稳态、葡萄糖代谢和细胞能量之间以前未被怀疑的联系。