Suppr超能文献

重新编程核苷酸代谢以适应硝化应激。

Reprograms Nucleotide Metabolism in Its Adaptation to Nitrosative Stress.

机构信息

University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA.

University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, Colorado, USA

出版信息

mBio. 2018 Feb 27;9(1):e00211-18. doi: 10.1128/mBio.00211-18.

Abstract

The adaptations that protect pathogenic microorganisms against the cytotoxicity of nitric oxide (NO) engendered in the immune response are incompletely understood. We show here that salmonellae experiencing nitrosative stress suffer dramatic losses of the nucleoside triphosphates ATP, GTP, CTP, and UTP while simultaneously generating a massive burst of the alarmone nucleotide guanosine tetraphosphate. RelA proteins associated with ribosomes overwhelmingly synthesize guanosine tetraphosphate in response to NO as a feedback mechanism to transient branched-chain amino acid auxotrophies. Guanosine tetraphosphate activates the transcription of valine biosynthetic genes, thereby reestablishing branched-chain amino acid biosynthesis that enables the translation of the NO-consuming flavohemoglobin Hmp. Guanosine tetraphosphate synthesized by RelA protects salmonellae from the metabolic stress inflicted by reactive nitrogen species generated in the mammalian host response. This research illustrates the importance of nucleotide metabolism in the adaptation of salmonellae to the nutritional stress imposed by NO released in the innate host response. Nitric oxide triggers dramatic drops in nucleoside triphosphates, the building blocks that power DNA replication; RNA transcription; translation; cell division; and the biosynthesis of fatty acids, lipopolysaccharide, and peptidoglycan. Concomitantly, this diatomic gas stimulates a burst of guanosine tetraphosphate. Global changes in nucleotide metabolism may contribute to the potent bacteriostatic activity of nitric oxide. In addition to inhibiting numerous growth-dependent processes, guanosine tetraphosphate positively regulates the transcription of branched-chain amino acid biosynthesis genes, thereby facilitating the translation of antinitrosative defenses that mediate recovery from nitrosative stress.

摘要

一氧化氮(NO)引发的免疫反应所产生的细胞毒性使病原微生物产生适应性,但这种适应性的机制尚不完全清楚。我们在这里表明,感受硝化应激的沙门氏菌会大量损失核苷三磷酸(ATP、GTP、CTP 和 UTP),同时会产生大量的四磷酸鸟苷(ppGpp)警报核苷酸。与核糖体结合的 RelA 蛋白会作为一种反馈机制,在受到 NO 刺激时,大量合成 ppGpp,以应对短暂的支链氨基酸营养缺陷。ppGpp 激活了缬氨酸生物合成基因的转录,从而重新建立支链氨基酸的生物合成,使消耗 NO 的黄素血红蛋白 Hmp 得以翻译。RelA 合成的 ppGpp 使沙门氏菌能够抵御哺乳动物宿主反应产生的活性氮物种造成的代谢应激。这项研究说明了核苷酸代谢在沙门氏菌适应由先天宿主反应释放的 NO 造成的营养压力中的重要性。一氧化氮会导致核苷三磷酸(DNA 复制、RNA 转录、翻译、细胞分裂和脂肪酸、脂多糖和肽聚糖生物合成的能量来源)的剧烈下降;同时,这种双原子气体刺激了 ppGpp 的爆发。核苷酸代谢的全局变化可能有助于一氧化氮的强大抑菌活性。除了抑制许多依赖生长的过程外,ppGpp 还正向调节支链氨基酸生物合成基因的转录,从而促进翻译抗硝化防御,介导从硝化应激中恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22dd/5829828/67bd84c5c871/mbo0011837600001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验