Suppr超能文献

国际验证 SORG 机器学习算法在预测接受手术治疗的肢体转移患者生存情况的应用。

International Validation of the SORG Machine-learning Algorithm for Predicting the Survival of Patients with Extremity Metastases Undergoing Surgical Treatment.

机构信息

Department of Medical Education, National Taiwan University Hospital, Taipei City, Taiwan.

Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei City, Taiwan.

出版信息

Clin Orthop Relat Res. 2022 Feb 1;480(2):367-378. doi: 10.1097/CORR.0000000000001969.

Abstract

BACKGROUND

The Skeletal Oncology Research Group machine-learning algorithms (SORG-MLAs) estimate 90-day and 1-year survival in patients with long-bone metastases undergoing surgical treatment and have demonstrated good discriminatory ability on internal validation. However, the performance of a prediction model could potentially vary by race or region, and the SORG-MLA must be externally validated in an Asian cohort. Furthermore, the authors of the original developmental study did not consider the Eastern Cooperative Oncology Group (ECOG) performance status, a survival prognosticator repeatedly validated in other studies, in their algorithms because of missing data.

QUESTIONS/PURPOSES: (1) Is the SORG-MLA generalizable to Taiwanese patients for predicting 90-day and 1-year mortality? (2) Is the ECOG score an independent factor associated with 90-day and 1-year mortality while controlling for SORG-MLA predictions?

METHODS

All 356 patients who underwent surgery for long-bone metastases between 2014 and 2019 at one tertiary care center in Taiwan were included. Ninety-eight percent (349 of 356) of patients were of Han Chinese descent. The median (range) patient age was 61 years (25 to 95), 52% (184 of 356) were women, and the median BMI was 23 kg/m2 (13 to 39 kg/m2). The most common primary tumors were lung cancer (33% [116 of 356]) and breast cancer (16% [58 of 356]). Fifty-five percent (195 of 356) of patients presented with a complete pathologic fracture. Intramedullary nailing was the most commonly performed type of surgery (59% [210 of 356]), followed by plate screw fixation (23% [81 of 356]) and endoprosthetic reconstruction (18% [65 of 356]). Six patients were lost to follow-up within 90 days; 30 were lost to follow-up within 1 year. Eighty-five percent (301 of 356) of patients were followed until death or for at least 2 years. Survival was 82% (287 of 350) at 90 days and 49% (159 of 326) at 1 year. The model's performance metrics included discrimination (concordance index [c-index]), calibration (intercept and slope), and Brier score. In general, a c-index of 0.5 indicates random guess and a c-index of 0.8 denotes excellent discrimination. Calibration refers to the agreement between the predicted outcomes and the actual outcomes, with a perfect calibration having an intercept of 0 and a slope of 1. The Brier score of a prediction model must be compared with and ideally should be smaller than the score of the null model. A decision curve analysis was then performed for the 90-day and 1-year prediction models to evaluate their net benefit across a range of different threshold probabilities. A multivariate logistic regression analysis was used to evaluate whether the ECOG score was an independent prognosticator while controlling for the SORG-MLA's predictions. We did not perform retraining/recalibration because we were not trying to update the SORG-MLA algorithm in this study.

RESULTS

The SORG-MLA had good discriminatory ability at both timepoints, with a c-index of 0.80 (95% confidence interval 0.74 to 0.86) for 90-day survival prediction and a c-index of 0.84 (95% CI 0.80 to 0.89) for 1-year survival prediction. However, the calibration analysis showed that the SORG-MLAs tended to underestimate Taiwanese patients' survival (90-day survival prediction: calibration intercept 0.78 [95% CI 0.46 to 1.10], calibration slope 0.74 [95% CI 0.53 to 0.96]; 1-year survival prediction: calibration intercept 0.75 [95% CI 0.49 to 1.00], calibration slope 1.22 [95% CI 0.95 to 1.49]). The Brier score of the 90-day and 1-year SORG-MLA prediction models was lower than their respective null model (0.12 versus 0.16 for 90-day prediction; 0.16 versus 0.25 for 1-year prediction), indicating good overall performance of SORG-MLAs at these two timepoints. Decision curve analysis showed SORG-MLAs provided net benefits when threshold probabilities ranged from 0.40 to 0.95 for 90-day survival prediction and from 0.15 to 1.0 for 1-year prediction. The ECOG score was an independent factor associated with 90-day mortality (odds ratio 1.94 [95% CI 1.01 to 3.73]) but not 1-year mortality (OR 1.07 [95% CI 0.53 to 2.17]) after controlling for SORG-MLA predictions for 90-day and 1-year survival, respectively.

CONCLUSION

SORG-MLAs retained good discriminatory ability in Taiwanese patients with long-bone metastases, although their actual survival time was slightly underestimated. More international validation and incremental value studies that address factors such as the ECOG score are warranted to refine the algorithms, which can be freely accessed online at https://sorg-apps.shinyapps.io/extremitymetssurvival/.

LEVEL OF EVIDENCE

Level III, therapeutic study.

摘要

背景

骨骼肿瘤研究组机器学习算法(SORG-MLA)可用于预测接受手术治疗的长骨转移患者的 90 天和 1 年生存率,其内部验证结果显示具有良好的区分能力。然而,预测模型的性能可能因种族或地区而异,因此 SORG-MLA 必须在亚洲队列中进行外部验证。此外,原始开发研究的作者没有考虑到东部肿瘤协作组(ECOG)体能状态,这是其他研究中反复验证的生存预后因素,因为存在数据缺失。

问题/目的:(1)SORG-MLA 是否可推广用于预测台湾患者的 90 天和 1 年死亡率?(2)在控制 SORG-MLA 预测的情况下,ECOG 评分是否为与 90 天和 1 年死亡率相关的独立因素?

方法

纳入了在一家三级护理中心接受长骨转移手术的 356 例患者,所有患者均于 2014 年至 2019 年期间在该中心接受治疗。98%(349/356)的患者为汉族,中位(范围)年龄为 61 岁(25 岁至 95 岁),52%(184/356)为女性,中位 BMI 为 23 kg/m2(13 至 39 kg/m2)。最常见的原发肿瘤为肺癌(33%[116/356])和乳腺癌(16%[58/356])。55%(195/356)的患者存在完全病理性骨折。最常进行的手术类型为髓内钉固定(59%[210/356]),其次是钢板螺钉固定(23%[81/356])和假体重建(18%[65/356])。有 6 例患者在 90 天内失访,30 例患者在 1 年内失访。85%(301/356)的患者随访至死亡或至少 2 年。90 天生存率为 82%(287/350),1 年生存率为 49%(159/326)。该模型的性能指标包括区分度(一致性指数[c-index])、校准(截距和斜率)和 Brier 评分。一般来说,c-index 为 0.5 表示随机猜测,c-index 为 0.8 表示良好的区分度。校准是指预测结果与实际结果之间的一致性,理想情况下截距为 0,斜率为 1。预测模型的 Brier 评分必须与零模型进行比较,并且理想情况下应小于零模型的 Brier 评分。然后进行了 90 天和 1 年预测模型的决策曲线分析,以评估其在不同阈值概率范围内的净获益。使用多变量逻辑回归分析来评估 ECOG 评分是否为控制 SORG-MLA 预测时的独立预后因素。我们没有进行重新训练/重新校准,因为我们并不是试图在这项研究中更新 SORG-MLA 算法。

结果

SORG-MLA 在两个时间点都具有良好的区分能力,90 天生存率预测的 c-index 为 0.80(95%置信区间 0.74 至 0.86),1 年生存率预测的 c-index 为 0.84(95%CI 0.80 至 0.89)。然而,校准分析表明,SORG-MLA 倾向于低估台湾患者的生存率(90 天生存率预测:校准截距 0.78[95%CI 0.46 至 1.10],校准斜率 0.74[95%CI 0.53 至 0.96];1 年生存率预测:校准截距 0.75[95%CI 0.49 至 1.00],校准斜率 1.22[95%CI 0.95 至 1.49])。90 天和 1 年 SORG-MLA 预测模型的 Brier 评分均低于各自的零模型(90 天预测为 0.12 对 0.16;1 年预测为 0.16 对 0.25),这表明 SORG-MLA 在这两个时间点的整体表现良好。决策曲线分析表明,当阈值概率范围为 0.40 至 0.95 时,SORG-MLA 对 90 天生存率预测具有净获益,当阈值概率范围为 0.15 至 1.0 时,SORG-MLA 对 1 年生存率预测具有净获益。ECOG 评分是与 90 天死亡率相关的独立因素(比值比 1.94[95%CI 1.01 至 3.73]),但不是与 1 年死亡率相关的独立因素(比值比 1.07[95%CI 0.53 至 2.17]),分别在控制 SORG-MLA 对 90 天和 1 年生存率的预测后。

结论

SORG-MLA 在台湾长骨转移患者中保留了良好的区分能力,尽管其实际生存时间略有低估。需要进行更多的国际验证和增量价值研究,以解决 ECOG 评分等因素,该算法可在 https://sorg-apps.shinyapps.io/extremitymetssurvival/ 上免费获取。

证据水平

III 级,治疗性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f76/8747677/8a78f1d8ebee/abjs-480-367-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验