Suppr超能文献

用于识别下肢骨肿瘤假体置换术后1年死亡和新发远处转移风险患者的可解释机器学习模型的开发:PARITY试验的二次分析

Development of Explainable Machine Learning Models to Identify Patients at Risk for 1-Year Mortality and New Distant Metastases Postendoprosthetic Reconstruction for Lower Extremity Bone Tumors: A Secondary Analysis of the PARITY Trial.

作者信息

Deng Jiawen, Moskalyk Myron, Nayan Madhur, Aoude Ahmed, Ghert Michelle, Bhatnagar Sahir, Bozzo Anthony

机构信息

Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

出版信息

JB JS Open Access. 2025 May 22;10(2). doi: 10.2106/JBJS.OA.24.00213. eCollection 2025 Apr-Jun.

Abstract

BACKGROUND

Accurate prediction of postoperative metastasis and mortality risks in patients undergoing lower-limb oncological resection and endoprosthetic reconstruction is essential for guiding adjuvant therapies and managing patient expectations. Current prediction methods are limited by variability in patient-specific factors. This study aims to develop and internally validate explainable machine learning (ML) models to predict the 1-year risk of new distant metastases and mortality in these patients.

METHODS

We performed a secondary analysis of data from the Prophylactic Antibiotic Regimens in Tumor Surgery trial, which included 604 patients. Candidate features were selected based on availability and clinical relevance and then narrowed using Least Absolute Shrinkage and Selection Operator (LASSO) regression and Boruta algorithms. Six ML classification algorithms were tuned and calibrated: logistic regression, support vector machines, random forest, Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), and neural networks. Models were developed with and without including percent tumor necrosis due to its high missing data rate (>30%). Hyperparameters were tuned using Bayesian optimization. Internal validation was conducted using a 30% hold-out set. Model explainability was assessed using permutation-based feature importance and SHapley Additive exPlanations.

RESULTS

LightGBM was identified as the best-performing algorithm for both outcomes. For 1-year mortality prediction without percent necrosis, LightGBM achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.78 (95% confidence interval [CI] 0.70-0.86) during cross-validation and 0.72 on internal validation. For distant metastasis prediction, the LightGBM model without percent necrosis achieved an AUC-ROC of 0.77 (95% CI 0.71-0.84) during cross-validation and 0.77 on internal validation. Including percent necrosis did not significantly improve model performance. The top predictors identified were patient age, largest tumor dimension, and tumor stage.

CONCLUSIONS

Explainable ML models can effectively predict the 1-year risk of mortality and new distant metastases in patients undergoing lower-limb oncological resection and endoprosthetic reconstruction. Further external validation and consideration of other data modalities are required before integrating these ML-driven risk assessments into routine clinical practice.

LEVEL OF EVIDENCE

Level II, Prognostic Study. See Instructions for Authors for a complete description of levels of evidence.

摘要

背景

准确预测接受下肢肿瘤切除及假体置换重建手术患者的术后转移和死亡风险,对于指导辅助治疗及管理患者预期至关重要。当前的预测方法受患者特异性因素变异性的限制。本研究旨在开发并进行内部验证可解释的机器学习(ML)模型,以预测这些患者1年内发生新的远处转移和死亡的风险。

方法

我们对肿瘤手术预防性抗生素方案试验中的数据进行了二次分析,该试验纳入了604例患者。基于数据可得性和临床相关性选择候选特征,然后使用最小绝对收缩和选择算子(LASSO)回归及Boruta算法进行筛选。对六种ML分类算法进行了调优和校准:逻辑回归、支持向量机、随机森林、轻量级梯度提升机(LightGBM)、极端梯度提升(XGBoost)和神经网络。分别构建了包含和不包含肿瘤坏死百分比(因其数据缺失率高>30%)的模型。使用贝叶斯优化对超参数进行调优。使用30%的留出集进行内部验证。使用基于排列的特征重要性和SHapley加性解释评估模型的可解释性。

结果

LightGBM被确定为两种结局表现最佳的算法。对于不包含坏死百分比的1年死亡率预测,LightGBM在交叉验证期间的受试者操作特征曲线下面积(AUC-ROC)为0.78(95%置信区间[CI]0.70-0.86),内部验证时为0.72。对于远处转移预测,不包含坏死百分比的LightGBM模型在交叉验证期间的AUC-ROC为0.77(95%CI 0.71-0.84),内部验证时为0.77。纳入坏死百分比并未显著改善模型性能。确定的主要预测因素为患者年龄、最大肿瘤尺寸和肿瘤分期。

结论

可解释的ML模型能够有效预测接受下肢肿瘤切除及假体置换重建手术患者1年内的死亡风险和新的远处转移风险。在将这些基于ML的风险评估整合到常规临床实践之前,还需要进一步的外部验证并考虑其他数据模式。

证据水平

II级,预后研究。有关证据水平的完整描述,请参阅作者须知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fe2/12080683/4f5e3f5d4e17/jbjsoa-10-e24.00213-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验