Suppr超能文献

过敏原组分联合应用提高花生过敏诊断准确性。

Combining Allergen Components Improves the Accuracy of Peanut Allergy Diagnosis.

机构信息

Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.

Guy's and St Thomas' National Health Service Foundation Trust and King's College London National Institute for Health Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London, United Kingdom.

出版信息

J Allergy Clin Immunol Pract. 2022 Jan;10(1):189-199. doi: 10.1016/j.jaip.2021.08.029. Epub 2021 Sep 4.

Abstract

BACKGROUND

IgE to peanut often occurs in the absence of peanut allergy. Detection of allergen component specific IgE (sIgE) has improved diagnosis and birthed molecular allergen component arrays, in which sensitization to multiple allergen components can be measured simultaneously.

OBJECTIVE

To improve the diagnostic utility of serology for peanut allergy, by mapping interactions of sIgE to multiple components and IgE functional characteristics.

METHODS

A cohort of 100 children was studied, with a 60-children cohort employed for external validation. Levels of total IgE, sIgE to peanut, and peanut components were measured using singleplex ImmunoCAP and multiplex immuno solid-phase allergen chip (ISAC). Peanut IgE specific activity, avidity, and diversity were determined. Diagnostic modeling was performed using a Bayesian hierarchical model.

RESULTS

Sensitization to the 112 allergens on ISAC (model 1) demonstrated the highest accuracy to diagnose peanut allergy (area under the curve [AUC] = 0.92). Sensitization to peanut components on ISAC (model 2) reported an AUC of 0.86 and on singleplex (model 3) an AUC of 0.92, which was greater than that of Ara h 2 sIgE alone (AUC = 0.90). Functional characteristics of peanut sIgE (model 4) reported an AUC of 0.89, which was greater than that of peanut sIgE (AUC = 0.75). Model 3 offered the highest predictive value and the second highest overall diagnostic accuracy.

CONCLUSIONS

sIgE to a combination of allergen components (Ara h 1, 2, 3, and 6) is highly predictive of peanut allergy and superior to individual markers. Combining the functional characteristics of IgE was superior to peanut sIgE levels alone. These models can be applied in real time during clinical consultations using online calculators.

摘要

背景

IgE 对花生的反应常常发生在没有花生过敏的情况下。检测过敏原成分特异性 IgE(sIgE)提高了诊断水平,并催生了分子过敏原成分阵列,其中可以同时测量对多种过敏原成分的致敏情况。

目的

通过绘制 sIgE 与多种成分的相互作用以及 IgE 功能特征,提高对花生过敏的血清学诊断效用。

方法

研究了 100 名儿童的队列,其中 60 名儿童的队列用于外部验证。使用单克隆 ImmunoCAP 和多聚免疫固相过敏原芯片(ISAC)测量总 IgE、花生 sIgE 和花生成分的水平。测定了花生 IgE 的特异性活性、亲合力和多样性。使用贝叶斯层次模型进行诊断建模。

结果

ISAC 上 112 种过敏原的致敏情况(模型 1)对诊断花生过敏的准确性最高(曲线下面积[AUC]为 0.92)。ISAC 上的花生成分致敏情况(模型 2)的 AUC 为 0.86,单克隆检测(模型 3)的 AUC 为 0.92,均大于 Ara h 2 sIgE 单独检测(AUC=0.90)。花生 sIgE 的功能特征(模型 4)的 AUC 为 0.89,大于花生 sIgE 单独检测(AUC=0.75)。模型 3 提供了最高的预测值和第二高的总体诊断准确性。

结论

过敏原成分(Ara h 1、2、3 和 6)的 sIgE 组合对花生过敏具有高度预测性,优于单个标志物。结合 IgE 的功能特征优于单独检测花生 sIgE 水平。这些模型可以使用在线计算器在临床咨询中实时应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验