Saund Simran S, Siegler Maxime A, Thoi V Sara
Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Inorg Chem. 2021 Sep 6;60(17):13011-13020. doi: 10.1021/acs.inorgchem.1c01427. Epub 2021 Aug 17.
Electrocatalytic reduction of carbon dioxide (CO) by transition-metal catalysts is an attractive means for storing renewably sourced electricity in chemical bonds. Metal coordination compounds represent highly tunable platforms ideal for studying the fundamental stepwise transformations of CO into its reduced products. However, metal complexes can decompose upon extended electrolysis and form chemically distinct molecular species or, in some cases, catalytically active electrode deposits. Deciphering the degradative pathways is important for understanding the nature of the active catalyst and designing robust metal complexes for small-molecule activation. Herein, we present a new dicationic rhenium bipyridyl complex capable of multielectron ligand-centered reductions electrochemically. Our in-depth experimental and computational study provides mechanistic insight into an unusual reductively induced Hoffman-type elimination. We identify benzylic tertiary ammonium groups as an electrolytically susceptible moiety and propose key intermediates in the degradative pathway. This investigation highlights the complex interplay between the ligand and metal ion and will guide the future design of metal-organic catalysts.
过渡金属催化剂对二氧化碳(CO₂)的电催化还原是一种将可再生电能存储于化学键中的极具吸引力的方法。金属配位化合物是高度可调谐的平台,非常适合研究CO₂逐步转化为其还原产物的基本过程。然而,金属配合物在长时间电解后可能会分解,形成化学性质不同的分子物种,或者在某些情况下形成具有催化活性的电极沉积物。解析降解途径对于理解活性催化剂的本质以及设计用于小分子活化的稳健金属配合物至关重要。在此,我们展示了一种新型的二价铼联吡啶配合物,它能够通过电化学方式进行多电子配体中心还原。我们深入的实验和计算研究为一种不寻常的还原诱导霍夫曼型消除反应提供了机理见解。我们确定苄基叔铵基团是电解敏感部分,并提出了降解途径中的关键中间体。这项研究突出了配体与金属离子之间复杂的相互作用,并将指导未来金属有机催化剂的设计。