Suppr超能文献

杂化分子催化剂:振动和频光谱、电化学和理论研究。

Heterogenized Molecular Catalysts: Vibrational Sum-Frequency Spectroscopic, Electrochemical, and Theoretical Investigations.

机构信息

Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States.

Department of Chemistry and Energy Sciences Institute , Yale University , New Haven , Connecticut 06520 , United States.

出版信息

Acc Chem Res. 2019 May 21;52(5):1289-1300. doi: 10.1021/acs.accounts.9b00001. Epub 2019 May 6.

Abstract

Rhenium and manganese bipyridyl tricarbonyl complexes have attracted intense interest for their promising applications in photocatalytic and electrocatalytic CO reduction in both homogeneous and heterogenized systems. To date, there have been extensive studies on immobilizing Re catalysts on solid surfaces for higher catalytic efficiency, reduced catalyst loading, and convenient product separation. However, in order for the heterogenized molecular catalysts to achieve the combination of the best aspects of homogeneous and heterogeneous catalysts, it is essential to understand the fundamental physicochemical properties of such heterogeneous systems, such as surface-bound structures of Re/Mn catalysts, substrate-adsorbate interactions, and photoinduced or electric-field-induced effects on Re/Mn catalysts. For example, the surface may act to (un)block substrates, (un)trap charges, (de)stabilize particular intermediates (and thus affect scaling relations), and shift potentials in different directions, just as protein environments do. The close collaboration between the Lian, Batista, and Kubiak groups has resulted in an integrated approach to investigate how the semiconductor or metal surface affects the properties of the attached catalyst. Synthetic strategies to achieve stable and controlled attachment of Re/Mn molecular catalysts have been developed. Steady-state, time-resolved, and electrochemical vibrational sum-frequency generation (SFG) spectroscopic studies have provided insight into the effects of interfacial structures, ultrafast vibrational energy relaxation, and electric field on the Re/Mn catalysts, respectively. Various computational methods utilizing density functional theory (DFT) have been developed and applied to determine the molecular orientation by direct comparison to spectroscopy, unravel vibrational energy relaxation mechanisms, and quantify the interfacial electric field strength of the Re/Mn catalyst systems. This Account starts with a discussion of the recent progress in determining the surface-bound structures of Re catalysts on semiconductor and Au surfaces by a combined vibrational SFG and DFT study. The effects of crystal facet, length of anchoring ligands, and doping of the semiconductor on the bound structures of Re catalysts and of the substrate itself are discussed. This is followed by a summary of the progress in understanding the vibrational relaxation (VR) dynamics of Re catalysts covalently adsorbed on semiconductor and metal surfaces. The VR processes of Re catalysts on TiO films and TiO single crystals and a Re catalyst tethered on Au, particularly the role of electron-hole pair (EHP)-induced coupling on the VR of the Re catalyst bound on Au, are discussed. The Account also summarizes recent studies in quantifying the electric field strength experienced by the catalytically active site of the Re/Mn catalyst bound on a Au electrode based on a combined electrochemical SFG and DFT study of the Stark tuning of the CO stretching modes of these catalysts. Finally, future research directions on surface-immobilized molecular catalyst systems are discussed.

摘要

铼和锰联吡啶三羰基配合物因其在均相和异相系统中光催化和电催化 CO 还原方面的应用前景而备受关注。迄今为止,人们已经进行了广泛的研究,将 Re 催化剂固定在固体表面上以提高催化效率、减少催化剂负载量和方便产物分离。然而,为了使异相分子催化剂实现均相和异相催化剂的最佳组合,了解这种异相体系的基本物理化学性质至关重要,例如 Re/Mn 催化剂的表面结合结构、底物-吸附物相互作用以及对 Re/Mn 催化剂的光诱导或电场诱导效应。例如,表面可能会(un)阻止底物、(un)捕获电荷、(de)稳定特定中间体(从而影响比例关系)并使电位朝不同方向移动,就像蛋白质环境一样。Lian、Batista 和 Kubiak 小组的密切合作促成了一种综合方法,用于研究半导体或金属表面如何影响附着催化剂的性质。已经开发了实现 Re/Mn 分子催化剂稳定和可控附着的合成策略。稳态、时间分辨和电化学振动和频产生(SFG)光谱研究分别提供了对界面结构、超快振动能量弛豫和电场对 Re/Mn 催化剂影响的深入了解。利用密度泛函理论(DFT)开发并应用了各种计算方法,通过直接与光谱比较来确定分子取向、揭示振动能量弛豫机制和量化 Re/Mn 催化剂体系的界面电场强度。本账目首先讨论了通过振动 SFG 和 DFT 联合研究确定半导体和 Au 表面上 Re 催化剂表面结合结构的最新进展。讨论了晶体面、锚固配体长度和半导体掺杂对 Re 催化剂结合结构和底物本身的影响。其次总结了理解共价吸附在半导体和金属表面上的 Re 催化剂的振动弛豫(VR)动力学的进展。讨论了 Re 催化剂在 TiO 薄膜和 TiO 单晶上的 VR 过程以及在 Au 上的 Re 催化剂的 VR 过程,特别是电子-空穴对(EHP)诱导耦合对 Au 上结合的 Re 催化剂的 VR 的作用。该账目还总结了基于电化学 SFG 和 DFT 对这些催化剂的 CO 伸缩模式的斯塔克调谐的结合研究,用于量化结合在 Au 电极上的 Re/Mn 催化剂的催化活性位点所经历的电场强度的最新研究。最后,讨论了表面固定化分子催化剂体系的未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验