Suppr超能文献

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)受体结合域(RBD)界面处的上位性及其对疫苗逃逸的平淡无奇的影响

Epistasis at the SARS-CoV-2 RBD Interface and the Propitiously Boring Implications for Vaccine Escape.

作者信息

Rochman Nash D, Faure Guilhem, Wolf Yuri I, Freddolino Peter L, Zhang Feng, Koonin Eugene V

机构信息

National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894.

Broad Institute of MIT and Harvard, Cambridge, MA 02142.

出版信息

bioRxiv. 2021 Dec 22:2021.08.30.458225. doi: 10.1101/2021.08.30.458225.

Abstract

At the time of this writing, December 2021, potential emergence of vaccine escape variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a grave global concern. The interface between the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein and the host receptor (ACE2) overlap with the binding site of principal neutralizing antibodies (NAb), limiting the repertoire of viable mutations. Nonetheless, variants with multiple mutations in the RBD have rose to dominance. Non-additive, epistatic relationships among RBD mutations are apparent, and assessing the impact of such epistasis on the mutational landscape is crucial. Epistasis can substantially increase the risk of vaccine escape and cannot be completely characterized through the study of the wild type (WT) alone. We employed protein structure modeling using Rosetta to compare the effects of all single mutants at the RBD-NAb and RBD-ACE2 interfaces for the WT, Delta, Gamma, and Omicron variants. Overall, epistasis at the RBD interface appears to be limited and the effects of most multiple mutations are additive. Epistasis at the Delta variant interface weakly stabilizes NAb interaction relative to ACE2 interaction, whereas in the Gamma variant, epistasis more substantially destabilizes NAb interaction. Although a small, systematic trend towards NAb destabilization not observed for Delta or Gamma was detected for Omicron, and despite bearing significantly more RBD mutations, the epistatic landscape of the Omicron variant closely resembles that of Gamma. These results suggest that, although Omicron poses new risks not observed with Delta, structural constraints on the RBD hamper continued evolution towards more complete vaccine escape. The modest ensemble of mutations relative to the WT that are currently known to reduce vaccine efficacy is likely to comprise the majority of all possible escape mutations for future variants, predicting continued efficacy of the existing vaccines.

摘要

在撰写本文时(2021年12月),严重急性呼吸综合征冠状病毒2(SARS-CoV-2)疫苗逃逸变体的潜在出现是一个严重的全球问题。SARS-CoV-2刺突(S)蛋白的受体结合域(RBD)与宿主受体(ACE2)之间的界面与主要中和抗体(NAb)的结合位点重叠,限制了可行突变的种类。尽管如此,RBD中具有多个突变的变体已占据主导地位。RBD突变之间的非加性上位关系很明显,评估这种上位性对突变格局的影响至关重要。上位性可大幅增加疫苗逃逸的风险,仅通过对野生型(WT)的研究无法完全表征。我们使用Rosetta进行蛋白质结构建模,以比较WT、Delta、Gamma和Omicron变体在RBD-NAb和RBD-ACE2界面处所有单突变体的影响。总体而言,RBD界面处的上位性似乎有限,大多数多重突变的影响是加性的。Delta变体界面处的上位性相对于ACE2相互作用略微稳定了NAb相互作用,而在Gamma变体中,上位性更显著地破坏了NAb相互作用。尽管未在Delta或Gamma中观察到的、针对NAb去稳定化的小的系统性趋势在Omicron中被检测到,并且尽管Omicron携带的RBD突变明显更多,但其上位性格局与Gamma非常相似。这些结果表明,尽管Omicron带来了Delta未观察到的新风险,但RBD的结构限制阻碍了向更完全疫苗逃逸的持续进化。相对于WT目前已知会降低疫苗效力的适度突变组合可能构成未来变体所有可能逃逸突变的大部分,预示着现有疫苗的持续效力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b479/8711056/f75a57edcbd7/nihpp-2021.08.30.458225v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验