Suppr超能文献

SARS-CoV-2 受体结合域界面的上位性作用及对疫苗逃逸的有利影响

Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape.

机构信息

National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA.

Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

出版信息

mBio. 2022 Apr 26;13(2):e0013522. doi: 10.1128/mbio.00135-22. Epub 2022 Mar 15.

Abstract

At the time of this writing, December 2021, potential emergence of vaccine escape variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a grave global concern. The interface between the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein and the host receptor (ACE2) overlaps the binding site of principal neutralizing antibodies (NAb), limiting the repertoire of viable mutations. Nonetheless, variants with multiple RBD mutations have risen to dominance. Nonadditive, epistatic relationships among RBD mutations are apparent, and assessing the impact of such epistasis on the mutational landscape, particularly the risk of vaccine escape, is crucial. We employed protein structure modeling using Rosetta to compare the effects of all single mutants at the RBD-NAb and RBD-ACE2 interfaces for the wild type and Delta, Gamma, and Omicron variants. Overall, epistasis at the RBD interface appears to be limited, and the effects of most multiple mutations are additive. Epistasis at the Delta variant interface weakly stabilizes NAb interaction relative to ACE2 interaction, whereas in Gamma, epistasis more substantially destabilizes NAb interaction. Despite bearing many more RBD mutations, the epistatic landscape of Omicron closely resembles that of Gamma. Thus, although Omicron poses new risks not observed with Delta, structural constraints on the RBD appear to hamper continued evolution toward more complete vaccine escape. The modest ensemble of mutations relative to the wild type that are currently known to reduce vaccine efficacy is likely to contain the majority of all possible escape mutations for future variants, predicting the continued efficacy of the existing vaccines. Emergence of vaccine escape variants of SARS-CoV-2 is arguably the most pressing problem during the COVID-19 pandemic as vaccines are distributed worldwide. We employed a computational approach to assess the risk of antibody escape resulting from mutations in the receptor-binding domain of the spike protein of the wild-type SARS-CoV-2 virus as well as the Delta, Gamma, and Omicron variants. The efficacy of the existing vaccines against Omicron could be substantially reduced relative to the wild type, and the potential for vaccine escape is of grave concern. Our results suggest that although Omicron poses new evolutionary risks not observed for Delta, structural constraints on the RBD make continued evolution toward more complete vaccine escape from either Delta or Omicron unlikely. The modest set of escape-enhancing mutations already identified for the wild type likely include the majority of all possible mutations with this effect.

摘要

在撰写本文时(2021 年 12 月),严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)疫苗逃逸变体的潜在出现是一个严重的全球关注问题。SARS-CoV-2 刺突(S)蛋白的受体结合域(RBD)与宿主受体(ACE2)之间的界面重叠主要中和抗体(NAb)的结合位点,限制了可行突变的范围。尽管如此,具有多个 RBD 突变的变体已经占据主导地位。RBD 突变之间存在非加性、上位性关系,评估这种上位性对突变景观的影响,特别是疫苗逃逸的风险,至关重要。我们使用 Rosetta 进行蛋白质结构建模,比较了野生型和 Delta、Gamma 和 Omicron 变体的 RBD-NAb 和 RBD-ACE2 界面的所有单个突变的影响。总体而言,RBD 界面的上位性似乎有限,大多数多个突变的影响是相加的。与 ACE2 相互作用相比,Delta 变体界面的上位性弱稳定 NAb 相互作用,而在 Gamma 中,上位性更显著地破坏 NAb 相互作用。尽管具有更多的 RBD 突变,但 Omicron 的上位性景观与 Gamma 非常相似。因此,尽管 Omicron 带来了与 Delta 不同的新风险,但 RBD 上的结构限制似乎阻碍了朝着更完全的疫苗逃逸的持续进化。相对于野生型,目前已知降低疫苗效力的相对较少的突变组合很可能包含未来变体所有可能逃逸突变的大部分,从而预测现有疫苗的持续效力。SARS-CoV-2 疫苗逃逸变体的出现可以说是 COVID-19 大流行期间最紧迫的问题,因为疫苗正在全球范围内分发。我们采用计算方法评估了野生型 SARS-CoV-2 病毒刺突蛋白受体结合域突变导致抗体逃逸的风险,以及 Delta、Gamma 和 Omicron 变体。与野生型相比,现有疫苗对 Omicron 的效力可能会大大降低,疫苗逃逸的可能性令人严重关切。我们的结果表明,尽管 Omicron 带来了 Delta 未观察到的新进化风险,但 RBD 上的结构限制使得 Delta 或 Omicron 朝着更完全的疫苗逃逸方向持续进化不太可能。已经为野生型确定的少数增强逃逸的突变很可能包含大多数具有这种效应的所有可能突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97fc/9040817/08ab178b94df/mbio.00135-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验