Wang Wujun, Ye Fei, Mu Wangzhong, Dutta Joydeep, Laumert Björn
Department of Energy Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 114 19, Sweden.
ACS Appl Mater Interfaces. 2021 Sep 22;13(37):45008-45017. doi: 10.1021/acsami.1c10585. Epub 2021 Sep 8.
Enhancing the operating temperature of concentrating solar power systems is a promising way to obtain higher system efficiency and thus enhance their competitiveness. One major barrier is the unavailability of suitable solar absorber materials for operation at higher temperatures. In this work, we report on a new high-temperature absorber material by combining TiAlC MAX phase material and iron-cobalt-chromite spinel coating/paint. This durable material solution exhibits excellent performance, passing the thermal stability test in an open-air environment at a temperature of 1250 °C for 400 h and at 1300 °C for 200 h. The results show that the black spinel coating can offer a stable high solar absorptivity in the range of 0.877-0.894 throughout the 600 h test under high temperatures. These solar absorptivity values are even 1.6-3.3% higher than that for the sintered SiC ceramic that is a widely used solar absorber material. Divergence of solar absorptivity during these relatively long testing periods is less than 1.1%, indicating remarkable stability of the absorber material. Furthermore, considering the simple application process of the coating/painting utilizing a brush followed by curing at relatively low temperatures (room temperature, 95 and 260 °C in sequence), this absorber material shows the potential for large-scale, high-temperature solar thermal applications.
提高聚光太阳能发电系统的运行温度是获得更高系统效率从而增强其竞争力的一种很有前景的方法。一个主要障碍是缺乏适合在更高温度下运行的太阳能吸收材料。在这项工作中,我们报告了一种通过将TiAlC MAX相材料与铁钴铬铁矿尖晶石涂层/涂料相结合的新型高温吸收材料。这种耐用的材料解决方案表现出优异的性能,在露天环境中于1250℃下经过400小时以及在1300℃下经过200小时的热稳定性测试。结果表明,在整个600小时的高温测试中,黑色尖晶石涂层在0.877 - 0.894范围内可提供稳定的高太阳能吸收率。这些太阳能吸收率值甚至比广泛使用的太阳能吸收材料烧结SiC陶瓷高出1.6 - 3.3%。在这些相对较长的测试期间,太阳能吸收率的偏差小于1.1%,表明吸收材料具有显著的稳定性。此外,考虑到涂层/涂料使用刷子进行简单的涂覆过程,然后在相对较低的温度(依次为室温、95℃和260℃)下固化,这种吸收材料显示出大规模高温太阳能热应用的潜力。