Suppr超能文献

通过深度学习方法从化学指纹图谱中筛选针对 SARS-CoV-2 3CL 抑制的抗炎、抗凝和呼吸剂。

Screening Anti-inflammatory, Anticoagulant, and Respiratory Agents for SARS-CoV-2 3CL Inhibition from Chemical Fingerprints Through a Deep Learning Approach.

机构信息

Federal University of Bahia, Multidisciplinary Institute of Health, Vitória da Conquista, Bahia, Brazil.

出版信息

Rev Invest Clin. 2022 Jan 3;74(1):31-39. doi: 10.24875/RIC.21000282.

Abstract

BACKGROUND

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), triggers a pathophysiological process linked not only to viral mechanisms of infectivity, but also to the pattern of host response. Drug repurposing is a promising strategy for rapid identification of treatments for SARS-CoV-2 infection, and several attractive molecular viral targets can be exploited. Among those, 3CL protease is a potential target of great interest.

OBJECTIVE

The objective of the study was to screen potential 3CLpro inhibitors compounds based on chemical fingerprints among anti-inflammatory, anticoagulant, and respiratory system agents.

METHODS

The screening was developed based on a drug property prediction framework, in which the evaluated property was the ability to inhibit the activity of the 3CLpro protein, and the predictions were performed using a dense neural network trained and validated on bioassay data.

RESULTS

On the validation and test set, the model obtained area under the curve values of 98.2 and 76.3, respectively, demonstrating high specificity for both sets (98.5% and 94.7%). Regarding the 1278 compounds screened, the model indicated four anti-inflammatory agents, two anticoagulants, and one respiratory agent as potential 3CLpro inhibitors.

CONCLUSIONS

Those findings point to a possible desirable synergistic effect in the management of patients with COVID-19 and provide potential directions for in vitro and in vivo research, which are indispensable for the validation of their results.

摘要

背景

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)是导致 2019 年冠状病毒病(COVID-19)的病原体,其引发的病理生理过程不仅与病毒的感染机制有关,还与宿主反应模式有关。药物重新定位是快速确定 SARS-CoV-2 感染治疗方法的一种很有前途的策略,并且可以利用几种有吸引力的分子病毒靶标。其中,3CL 蛋白酶是一个非常有吸引力的潜在靶标。

目的

本研究的目的是筛选基于抗炎、抗凝和呼吸系统药物的化学指纹的潜在 3CLpro 抑制剂化合物。

方法

该筛选是基于药物性质预测框架进行的,其中评估的性质是抑制 3CLpro 蛋白活性的能力,预测是使用经过生物测定数据训练和验证的密集神经网络进行的。

结果

在验证集和测试集上,该模型的曲线下面积分别为 98.2 和 76.3,表明对两个数据集均具有很高的特异性(分别为 98.5%和 94.7%)。在所筛选的 1278 种化合物中,该模型提示四种抗炎药、两种抗凝药和一种呼吸药物可能是 3CLpro 抑制剂。

结论

这些发现表明在 COVID-19 患者的管理中可能存在理想的协同作用,并为体外和体内研究提供了潜在的方向,这对于验证其结果是必不可少的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验