Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal Campus, Bhimtal, 263136, India.
Department of Botany, Kumaun University, DSB Campus, Nainital, Uttarakhand, 263001, India.
Mol Divers. 2022 Aug;26(4):2243-2256. doi: 10.1007/s11030-021-10330-3. Epub 2021 Oct 12.
Blocking the main replicating enzyme, 3 Chymotrypsin-like protease (3CL) is the most promising drug development strategy against the SARS-CoV-2 virus, responsible for the current COVID-19 pandemic. In the present work, 9101 drugs obtained from the drug bank database were screened against SARS-CoV-2 3CL prosing deep learning, molecular docking, and molecular dynamics simulation techniques. In the initial stage, 500 drug-screened by deep learning regression model and subjected to molecular docking that resulted in 10 screened compounds with strong binding affinity. Further, five compounds were checked for their binding potential by analyzing molecular dynamics simulation for 100 ns at 300 K. In the final stage, two compounds {4-[(2s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1h-1,2,3-Benzotriazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)Methylphosphonic Acid and 1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4-dihydroindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)urea were screened as potential hits by analyzing several parameters like RMSD, Rg, RMSF, MMPBSA, and SASA. Thus, our study suggests two potential drugs that can be tested in the experimental conditions to evaluate the efficacy against SARS-CoV-2. Further, such drugs could be modified to develop more potent drugs against COVID-19.
阻断主要复制酶 3 糜蛋白酶样蛋白酶(3CL)是针对导致当前 COVID-19 大流行的 SARS-CoV-2 病毒最有前途的药物开发策略。在本工作中,使用深度学习、分子对接和分子动力学模拟技术对来自药物库数据库的 9101 种药物进行了针对 SARS-CoV-2 3CL pro 的筛选。在初始阶段,通过深度学习回归模型筛选了 500 种药物,并进行了分子对接,结果得到了 10 种具有强结合亲和力的筛选化合物。进一步,通过在 300 K 下进行 100 ns 的分子动力学模拟分析,检查了五种化合物的结合潜力。在最后阶段,通过分析几个参数,如 RMSD、Rg、RMSF、MMPBSA 和 SASA,两种化合物{4-[(2s,4e)-2-(1,3-苯并噻唑-2-基)-2-(1h-1,2,3-苯并三唑-1-基)-5-苯基戊-4-烯基]苯基}(二氟)甲基膦酸和 1-(3-(2,4-二甲基噻唑-5-基)-4-氧代-2,4-二氢茚并[1,2-c]吡唑-5-基)-3-(4-甲基哌嗪-1-基)脲被筛选为潜在的命中化合物。因此,我们的研究表明,有两种潜在的药物可以在实验条件下进行测试,以评估其对 SARS-CoV-2 的疗效。此外,还可以对这些药物进行修饰,以开发针对 COVID-19 的更有效的药物。