Suppr超能文献

使用机器学习神经网络和重新参数化经典力场对熔融盐 FLiNaK 的结构和输运性质进行比较研究。

Comparative Studies of the Structural and Transport Properties of Molten Salt FLiNaK Using the Machine-Learned Neural Network and Reparametrized Classical Forcefields.

机构信息

Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

J Phys Chem B. 2021 Sep 23;125(37):10562-10570. doi: 10.1021/acs.jpcb.1c05608. Epub 2021 Sep 8.

Abstract

Despite surging interest in molten salt reactors and thermal storage systems, knowledge of the physicochemical properties of molten salts are still inadequate due to demanding experiments that require high temperature, impurity control, and corrosion mitigation. Therefore, the ability to predict these properties for molten salts from first-principles computations is urgently needed. Herein, we developed and compared a machine-learned neural network force field (NNFF) and a reparametrized rigid ion model (RIM) for a prototypical molten salt LiF-NaF-KF (FLiNaK). We found that NNFF was able to reproduce both the structural and transport properties of the molten salt with first-principles accuracy and classical-MD computational efficiency. Furthermore, the correlation between the local atomic structures and the dynamics was identified by comparing with RIMs, suggesting the significance of polarization of anions implicitly embedded in the NNFF. This work demonstrated a computational framework that can facilitate the screening of molten salts with different chemical compositions, impurities, and additives, and at different thermodynamic conditions suitable for the next-generation nuclear reactors and thermal energy storage facilities.

摘要

尽管人们对熔盐反应堆和热能储存系统的兴趣日益浓厚,但由于需要高温、杂质控制和腐蚀缓解等苛刻的实验,对熔盐的物理化学性质的了解仍然不足。因此,迫切需要能够从第一性原理计算中预测这些熔盐性质的能力。在此,我们开发并比较了一种机器学习神经网络力场(NNFF)和一种重新参数化的刚性离子模型(RIM),用于原型熔盐 LiF-NaF-KF(FLiNaK)。我们发现,NNFF 能够以第一性原理的精度和经典 MD 计算效率再现熔盐的结构和输运性质。此外,通过与 RIM 进行比较,确定了局部原子结构与动力学之间的相关性,这表明了隐含在 NNFF 中的阴离子极化的重要性。这项工作展示了一种计算框架,可用于筛选具有不同化学成分、杂质和添加剂的熔盐,以及适用于下一代核反应堆和热能储存设施的不同热力学条件的熔盐。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验