Liu Xiaoyang, Bawane Kaustubh K, Clark Charles, Peng Yuxiang, Woods Michael E, Halstenberg Phillip, Xiao Xianghui, Lee Wah-Keat, Ma Lu, Ehrlich Steven, Dai Sheng, Thornton Katsuyo, Ge Mingyuan, Gakhar Ruchi, He Lingfeng, Chen-Wiegart Yu-Chen Karen
Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.
Advanced Characterization Department, Idaho National Laboratory, Idaho Falls, Idaho 83404, United States.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45606-45618. doi: 10.1021/acsami.4c02049. Epub 2024 Aug 16.
Molten salts serve as effective high-temperature heat transfer fluids and thermal storage media used in a wide range of energy generation and storage facilities, including concentrated solar power plants, molten salt reactors and high-temperature batteries. However, at the salt-metal interfaces, a complex interplay of charge-transfer reactions involving various metal ions, generated either as fission products or through corrosion of structural materials, takes place. Simultaneously, there is a mass transport of ions or atoms within the molten salt and the parent alloys. The precise physical and chemical mechanisms leading to the diverse morphological changes in these materials remain unclear. To address this knowledge gap, this work employed a combination of synchrotron X-ray nanotomography and electron microscopy to study the morphological and chemical evolution of Ni-20Cr in molten KCl-MgCl, while considering the influence of metal ions (Ni, Ce, and Eu) and variations in salt composition. Our research suggests that the interplay between interfacial diffusivity and reactivity determines the morphological evolution. The summary of the associated mass transport and reaction processes presented in this work is a step forward toward achieving a fundamental comprehension of the interactions between molten salts and alloys. Overall, the findings offer valuable insights for predicting the diverse chemical and structural alterations experienced by alloys in molten salt environments, thus aiding in the development of protective strategies for future applications involving molten salts.
熔盐是有效的高温传热流体和储热介质,广泛应用于各种能源生产和存储设施,包括聚光太阳能发电厂、熔盐反应堆和高温电池。然而,在盐与金属的界面处,涉及各种金属离子的电荷转移反应会发生复杂的相互作用,这些金属离子或是裂变产物,或是结构材料腐蚀产生的。同时,熔盐和母体合金内部存在离子或原子的质量传输。导致这些材料出现各种形态变化的确切物理和化学机制仍不清楚。为填补这一知识空白,本研究结合同步加速器X射线纳米断层扫描和电子显微镜技术,研究了Ni-20Cr在熔融KCl-MgCl中的形态和化学演变,同时考虑了金属离子(Ni、Ce和Eu)的影响以及盐成分的变化。我们的研究表明,界面扩散率和反应性之间的相互作用决定了形态演变。本研究中提出的相关质量传输和反应过程的总结是朝着深入理解熔盐与合金之间的相互作用迈出的一步。总体而言,这些发现为预测合金在熔盐环境中经历的各种化学和结构变化提供了有价值的见解,从而有助于为未来涉及熔盐的应用制定保护策略。