Suppr超能文献

核心激发光谱的运动方程耦合簇研究II:超越偶极近似

Equation of motion coupled-cluster study of core excitation spectra II: Beyond the dipole approximation.

作者信息

Park Young Choon, Perera Ajith, Bartlett Rodney J

机构信息

Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA.

出版信息

J Chem Phys. 2021 Sep 7;155(9):094103. doi: 10.1063/5.0059276.

Abstract

We present the time-independent (TI) and time-dependent (TD) equation of motion coupled-cluster (EOM-CC) oscillator strengths not limited to those obtained by the dipole approximation. For the conventional TI-EOM-CC, we implement all the terms in the multipole expansion through second order that contributes to the oscillator strength. These include contributions such as magnetic dipole, electric quadrupole, electric octupole, and magnetic quadrupole. In TD-EOM-CC, we only include the quadrupole moment contributions. This augments our previous work [Y. C. Park, A. Perera, and R. J. Bartlett, J. Chem. Phys. 151, 164117 (2019)]. The inclusion of the quadrupole contributions (and all the other contributions through second order in the case of TI-EOM-CCSD) enables us to obtain the intensities for the pre-edge transitions in the metal K-edge spectra, which are dipole inactive. The TI-EOM-CCSD and TD-EOM-CCSD spectra of Ti atoms are used to showcase the implementation of the second-order oscillator strengths. The origin of 1s → e and 1s → t in core spectra from iron tetrachloride and titanium tetrachloride is discussed and compared with the experiment.

摘要

我们给出了与时间无关(TI)和与时间有关(TD)的运动方程耦合簇(EOM-CC)振子强度,其不限于通过偶极近似获得的强度。对于传统的TI-EOM-CC,我们实现了多极展开中对振子强度有贡献的二阶所有项。这些贡献包括磁偶极、电四极、电八极和磁四极等。在TD-EOM-CC中,我们仅包括四极矩贡献。这扩展了我们之前的工作[Y. C. Park, A. Perera, and R. J. Bartlett, J. Chem. Phys. 151, 164117 (2019)]。包含四极贡献(以及在TI-EOM-CCSD情况下的二阶所有其他贡献)使我们能够获得金属K边光谱中预边跃迁的强度,这些跃迁是偶极非活性的。利用Ti原子的TI-EOM-CCSD和TD-EOM-CCSD光谱展示了二阶振子强度的实现。讨论了四氯化铁和四氯化钛核心光谱中1s→e和1s→t的起源,并与实验进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验