Lemke Yannick, Kussmann Jörg, Ochsenfeld Christian
Chair of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany.
Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, Stuttgart D-70569, Germany.
J Phys Chem A. 2024 Nov 14;128(45):9804-9818. doi: 10.1021/acs.jpca.4c04139. Epub 2024 Nov 4.
We adapt our recently developed constraint-based orbital-optimized excited-state method (COOX) for the computation of core excitations. COOX is a constrained density functional theory (cDFT) approach based on excitation amplitudes from linear-response time-dependent DFT (LR-TDDFT), and has been shown to provide accurate excitation energies and excited-state properties for valence excitations within a spin-restricted formalism. To extend COOX to core-excited states, we introduce a spin-unrestricted variant which allows us to obtain orbital-optimized core excitations with a single constraint. Using a triplet purification scheme in combination with the constrained unrestricted Hartree-Fock formalism, scalar-relativistic zero-order regular approximation corrections, and a semiempirical treatment of spin-orbit coupling, COOX is shown to produce highly accurate results for K- and L-edge excitations of second- and third-period atoms with subelectronvolt errors despite being based on LR-TDDFT, for which core excitations pose a well-known challenge. L- and M-edge excitations of heavier atoms up to uranium are also computationally feasible and numerically stable, but may require more advanced treatment of relativistic effects. Furthermore, COOX is shown to perform on par with or better than the popular ΔSCF approach while exhibiting more robust convergence, highlighting it as a promising tool for inexpensive and accurate simulations of X-ray absorption spectra.
我们采用最近开发的基于约束的轨道优化激发态方法(COOX)来计算芯激发。COOX是一种基于线性响应含时密度泛函理论(LR-TDDFT)激发振幅的约束密度泛函理论(cDFT)方法,并且已经证明在自旋限制形式下,它能为价激发提供精确的激发能和激发态性质。为了将COOX扩展到芯激发态,我们引入了一种自旋非限制变体,这使我们能够通过单一约束获得轨道优化的芯激发。结合使用三重态纯化方案、约束非限制哈特里 - 福克形式、标量相对论零阶正则近似修正以及自旋 - 轨道耦合的半经验处理,结果表明,尽管基于LR-TDDFT(芯激发对其构成众所周知的挑战),但COOX对于第二和第三周期原子的K边和L边激发能产生高精度结果,误差在亚电子伏特范围内。对于直至铀的较重原子的L边和M边激发,计算上也是可行且数值稳定的,但可能需要对相对论效应进行更高级的处理。此外,结果表明COOX的表现与流行的ΔSCF方法相当或更好,同时具有更稳健的收敛性,这突出了它作为一种用于廉价且准确模拟X射线吸收光谱的有前途工具的地位。