Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA.
J Chem Phys. 2021 Sep 7;155(9):094102. doi: 10.1063/5.0057104.
Bottom-up coarse-graining methods provide systematic tools for creating simplified models of molecular systems. However, coarse-grained (CG) models produced with such methods frequently fail to accurately reproduce all thermodynamic properties of the reference atomistic systems they seek to model and, moreover, can fail in even more significant ways when used at thermodynamic state points different from the reference conditions. These related problems of representability and transferability limit the usefulness of CG models, especially those of strongly state-dependent systems. In this work, we present a new strategy for creating temperature-transferable CG models using a single reference system and temperature. The approach is based on two complementary concepts. First, we switch to a microcanonical basis for formulating CG models, focusing on effective entropy functions rather than energy functions. This allows CG models to naturally represent information about underlying atomistic energy fluctuations, which would otherwise be lost. Such information not only reproduces energy distributions of the reference model but also successfully predicts the correct temperature dependence of the CG interactions, enabling temperature transferability. Second, we show that relative entropy minimization provides a direct and systematic approach to parameterize such classes of temperature-transferable CG models. We calibrate the approach initially using idealized model systems and then demonstrate its ability to create temperature-transferable CG models for several complex molecular liquids.
自下而上的粗粒化方法为创建分子系统的简化模型提供了系统的工具。然而,用这种方法产生的粗粒化(CG)模型常常不能准确地再现它们试图模拟的参考原子系统的所有热力学性质,而且,当用于与参考条件不同的热力学状态点时,甚至会以更显著的方式失效。这些与代表性和可转移性相关的问题限制了 CG 模型的有用性,特别是对于强状态依赖系统的模型。在这项工作中,我们提出了一种使用单个参考系统和温度来创建可传递温度的 CG 模型的新策略。该方法基于两个互补的概念。首先,我们切换到微正则系综来构建 CG 模型,重点是有效熵函数,而不是能量函数。这使得 CG 模型能够自然地表示有关基础原子能量波动的信息,否则这些信息将丢失。这些信息不仅再现了参考模型的能量分布,而且还成功地预测了 CG 相互作用的正确温度依赖性,从而实现了温度可传递性。其次,我们表明相对熵最小化为参数化这类可传递温度的 CG 模型提供了一种直接而系统的方法。我们最初使用理想化的模型系统来校准该方法,然后演示了它为几种复杂的分子液体创建可传递温度的 CG 模型的能力。