Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA; email:
Annu Rev Genet. 2021 Nov 23;55:331-348. doi: 10.1146/annurev-genet-071719-020924. Epub 2021 Sep 8.
Centromeres are essential to genome inheritance, serving as the site of kinetochore assembly and coordinating chromosome segregation during cell division. Abnormal centromere function is associated with birth defects, infertility, and cancer. Normally, centromeres are assembled and maintained at the same chromosomal location. However, ectopic centromeres form spontaneously at new genomic locations and contribute to genome instability and developmental defects as well as to acquired and congenital human disease. Studies in model organisms have suggested that certain regions of the genome, including pericentromeres, heterochromatin, and regions of open chromatin or active transcription, support neocentromere activation. However, there is no universal mechanism that explains neocentromere formation. This review focuses on recent technological and intellectual advances in neocentromere research and proposes future areas of study. Understanding neocentromere biology will provide a better perspective on chromosome and genome organization and functional context for information generated from the Human Genome Project, ENCODE, and other large genomics consortia.
着丝粒对于基因组的遗传至关重要,它作为动粒的组装位点,在细胞分裂过程中协调染色体的分离。着丝粒功能异常与出生缺陷、不孕和癌症有关。通常情况下,着丝粒在同一染色体位置组装并维持。然而,异位着丝粒会在新的基因组位置自发形成,导致基因组不稳定和发育缺陷,以及后天获得性和先天性人类疾病。模式生物的研究表明,基因组的某些区域,包括着丝粒周围区、异染色质以及开放染色质或转录活跃区域,支持新着丝粒的激活。然而,目前还没有一种通用的机制可以解释新着丝粒的形成。这篇综述重点介绍了新着丝粒研究的最新技术和知识进展,并提出了未来的研究领域。了解新着丝粒生物学将为染色体和基因组结构以及人类基因组计划、ENCODE 和其他大型基因组学联盟产生的信息提供更好的功能背景。