Suppr超能文献

基于深度学习的脑梗死溶栓评分自动化:及时的原理验证研究。

Deep Learning-Based Automated Thrombolysis in Cerebral Infarction Scoring: A Timely Proof-of-Principle Study.

机构信息

Department of Computational Neuroscience (M.N., T.S., R.W.), University Medical Center-Hamburg-Eppendorf, Germany.

Center for Biomedical Artificial Intelligence (bAIome) (M.N., T.S., R.W.), University Medical Center-Hamburg-Eppendorf, Germany.

出版信息

Stroke. 2021 Nov;52(11):3497-3504. doi: 10.1161/STROKEAHA.120.033807. Epub 2021 Sep 9.

Abstract

BACKGROUND AND PURPOSE

Mechanical thrombectomy is an established procedure for treatment of acute ischemic stroke. Mechanical thrombectomy success is commonly assessed by the Thrombolysis in Cerebral Infarction (TICI) score, assigned by visual inspection of X-ray digital subtraction angiography data. However, expert-based TICI scoring is highly observer-dependent. This represents a major obstacle for mechanical thrombectomy outcome comparison in, for instance, multicentric clinical studies. Focusing on occlusions of the M1 segment of the middle cerebral artery, the present study aimed to develop a deep learning (DL) solution to automated and, therefore, objective TICI scoring, to evaluate the agreement of DL- and expert-based scoring, and to compare corresponding numbers to published scoring variability of clinical experts.

METHODS

The study comprises 2 independent datasets. For DL system training and initial evaluation, an in-house dataset of 491 digital subtraction angiography series and modified TICI scores of 236 patients with M1 occlusions was collected. To test the model generalization capability, an independent external dataset with 95 digital subtraction angiography series was analyzed. Characteristics of the DL system were modeling TICI scoring as ordinal regression, explicit consideration of the temporal image information, integration of physiological knowledge, and modeling of inherent TICI scoring uncertainties.

RESULTS

For the in-house dataset, the DL system yields Cohen’s kappa, overall accuracy, and specific agreement values of 0.61, 71%, and 63% to 84%, respectively, compared with the gold standard: the expert rating. Values slightly drop to 0.52/64%/43% to 87% when the model is, without changes, applied to the external dataset. After model updating, they increase to 0.65/74%/60% to 90%. Literature Cohen’s kappa values for expert-based TICI scoring agreement are in the order of 0.6.

CONCLUSIONS

The agreement of DL- and expert-based modified TICI scores in the range of published interobserver variability of clinical experts highlights the potential of the proposed DL solution to automated TICI scoring.

摘要

背景与目的

机械取栓术是治疗急性缺血性脑卒中的一种已确立的方法。通过 X 射线数字减影血管造影数据的视觉检查,常采用血栓溶解度(TICI)评分来评估机械取栓术的成功。然而,基于专家的 TICI 评分高度依赖观察者。这对于机械取栓术结果的比较,例如在多中心临床研究中,构成了一个主要障碍。本研究聚焦大脑中动脉 M1 段闭塞,旨在开发一种深度学习(DL)解决方案,实现自动且客观的 TICI 评分,评估 DL 与专家评分的一致性,并将相应数值与临床专家发表的评分变异性进行比较。

方法

本研究包括 2 个独立数据集。为了训练和初步评估 DL 系统,收集了一个内部的 491 例数字减影血管造影系列和 236 例 M1 闭塞患者的改良 TICI 评分。为了测试模型的泛化能力,分析了一个独立的外部数据集,包含 95 例数字减影血管造影系列。DL 系统的特点包括将 TICI 评分建模为有序回归、明确考虑时间图像信息、整合生理知识以及建模固有 TICI 评分的不确定性。

结果

对于内部数据集,与金标准(即专家评分)相比,DL 系统的科恩氏kappa、整体准确率和特定一致性分别为 0.61、71%和 63%至 84%。当模型不变地应用于外部数据集时,数值略降至 0.52/64%/43%至 87%。经过模型更新后,它们增加到 0.65/74%/60%至 90%。文献中报道的专家基于 TICI 评分的一致性科恩氏 kappa 值在临床专家发表的观察者间变异性范围内。

结论

DL 与专家基于改良 TICI 评分的一致性在临床专家发表的观察者间变异性范围内,突出了所提出的 DL 解决方案在自动 TICI 评分方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验