Suppr超能文献

人工智能、增强现实和虚拟现实在介入放射学中的进展与应用

Artificial Intelligence, Augmented Reality, and Virtual Reality Advances and Applications in Interventional Radiology.

作者信息

von Ende Elizabeth, Ryan Sean, Crain Matthew A, Makary Mina S

机构信息

Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.

出版信息

Diagnostics (Basel). 2023 Feb 27;13(5):892. doi: 10.3390/diagnostics13050892.

Abstract

Artificial intelligence (AI) uses computer algorithms to process and interpret data as well as perform tasks, while continuously redefining itself. Machine learning, a subset of AI, is based on reverse training in which evaluation and extraction of data occur from exposure to labeled examples. AI is capable of using neural networks to extract more complex, high-level data, even from unlabeled data sets, and better emulate, or even exceed, the human brain. Advances in AI have and will continue to revolutionize medicine, especially the field of radiology. Compared to the field of interventional radiology, AI innovations in the field of diagnostic radiology are more widely understood and used, although still with significant potential and growth on the horizon. Additionally, AI is closely related and often incorporated into the technology and programming of augmented reality, virtual reality, and radiogenomic innovations which have the potential to enhance the efficiency and accuracy of radiological diagnoses and treatment planning. There are many barriers that limit the applications of artificial intelligence applications into the clinical practice and dynamic procedures of interventional radiology. Despite these barriers to implementation, artificial intelligence in IR continues to advance and the continued development of machine learning and deep learning places interventional radiology in a unique position for exponential growth. This review describes the current and possible future applications of artificial intelligence, radiogenomics, and augmented and virtual reality in interventional radiology while also describing the challenges and limitations that must be addressed before these applications can be fully implemented into common clinical practice.

摘要

人工智能(AI)利用计算机算法来处理和解释数据以及执行任务,同时不断自我重新定义。机器学习作为人工智能的一个子集,基于反向训练,即通过接触标记示例来进行数据评估和提取。人工智能能够使用神经网络从甚至未标记的数据集中提取更复杂、高层次的数据,并更好地模拟甚至超越人类大脑。人工智能的进展已经并将继续给医学带来变革,尤其是放射学领域。与介入放射学领域相比,诊断放射学领域的人工智能创新得到了更广泛的理解和应用,尽管其仍有巨大潜力且未来发展前景广阔。此外,人工智能与增强现实、虚拟现实以及放射基因组学创新的技术和编程密切相关且常被纳入其中,这些创新有潜力提高放射学诊断和治疗规划的效率与准确性。存在许多障碍限制了人工智能在介入放射学临床实践和动态操作中的应用。尽管存在这些实施障碍,但介入放射学中的人工智能仍在不断发展,机器学习和深度学习的持续进步使介入放射学处于实现指数级增长的独特地位。本综述描述了人工智能、放射基因组学以及增强现实和虚拟现实在介入放射学中的当前及可能的未来应用,同时也描述了在这些应用能够全面应用于常规临床实践之前必须解决的挑战和限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5008/10000832/6325e22b894d/diagnostics-13-00892-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验