Suppr超能文献

通过增加训练数据的可变性来提高深度学习模型在诊断病理学中的泛化能力:骨肉瘤亚型实验

Improving Generalization of Deep Learning Models for Diagnostic Pathology by Increasing Variability in Training Data: Experiments on Osteosarcoma Subtypes.

作者信息

Tang Haiming, Sun Nanfei, Shen Steven

机构信息

Department of Pathology and Laboratory Medicine, Yale New Haven Hospital, New Haven, Connecticut, USA.

Department of Management Information System, College of Business, University of Houston Clear Lake, Houston, Texas, USA.

出版信息

J Pathol Inform. 2021 Aug 4;12:30. doi: 10.4103/jpi.jpi_78_20. eCollection 2021.

Abstract

BACKGROUND

Artificial intelligence has an emerging progress in diagnostic pathology. A large number of studies of applying deep learning models to histopathological images have been published in recent years. While many studies claim high accuracies, they may fall into the pitfalls of overfitting and lack of generalization due to the high variability of the histopathological images.

AIMS AND OBJECTS

Use the model training of osteosarcoma as an example to illustrate the pitfalls of overfitting and how the addition of model input variability can help improve model performance.

MATERIALS AND METHODS

We use the publicly available osteosarcoma dataset to retrain a previously published classification model for osteosarcoma. We partition the same set of images into the training and testing datasets differently than the original study: the test dataset consists of images from one patient while the training dataset consists images of all other patients. We also show the influence of training data variability on model performance by collecting a minimal dataset of 10 osteosarcoma subtypes as well as benign tissues and benign bone tumors of differentiation.

RESULTS

The performance of the re-trained model on the test set using the new partition schema declines dramatically, indicating a lack of model generalization and overfitting. We show the additions of more and moresubtypes into the training data step by step under the same model schema yield a series of coherent models with increasing performances.

CONCLUSIONS

In conclusion, we bring forward data preprocessing and collection tactics for histopathological images of high variability to avoid the pitfalls of overfitting and build deep learning models of higher generalization abilities.

摘要

背景

人工智能在诊断病理学领域取得了新进展。近年来,发表了大量将深度学习模型应用于组织病理学图像的研究。虽然许多研究声称准确率很高,但由于组织病理学图像的高度变异性,它们可能会陷入过度拟合和缺乏泛化能力的陷阱。

目的

以骨肉瘤的模型训练为例,说明过度拟合的陷阱以及增加模型输入变异性如何有助于提高模型性能。

材料与方法

我们使用公开可用的骨肉瘤数据集对先前发表的骨肉瘤分类模型进行重新训练。我们将同一组图像划分为训练集和测试集的方式与原始研究不同:测试数据集由一名患者的图像组成,而训练数据集由所有其他患者的图像组成。我们还通过收集10种骨肉瘤亚型以及良性组织和良性骨肿瘤分化的最小数据集,展示了训练数据变异性对模型性能的影响。

结果

使用新的划分模式在测试集上重新训练的模型性能大幅下降,表明模型缺乏泛化能力且存在过度拟合。我们展示了在相同模型模式下,逐步向训练数据中添加越来越多的亚型会产生一系列性能不断提高的连贯模型。

结论

总之,我们提出了针对高变异性组织病理学图像的数据预处理和收集策略,以避免过度拟合的陷阱,并构建具有更高泛化能力的深度学习模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/927e/8404558/563a9ac7db16/JPI-12-30-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验