Suppr超能文献

用于骨肉瘤中存活和坏死肿瘤区域评估的带有连体网络的深度模型。

Deep model with Siamese network for viable and necrotic tumor regions assessment in osteosarcoma.

作者信息

Fu Yu, Xue Peng, Ji Huizhong, Cui Wentao, Dong Enqing

机构信息

Department of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, 264209, China.

出版信息

Med Phys. 2020 Oct;47(10):4895-4905. doi: 10.1002/mp.14397. Epub 2020 Aug 5.

Abstract

PURPOSE

To achieve automatic classification of viable and necrotic tumor regions in osteosarcoma, most of the existing deep learning methods can only design a simple model to prevent overfitting on small datasets, which leads to the weak ability of extracting image features and low accuracy of the models. In order to solve the above problem, a deep model with Siamese network (DS-Net) was designed in this paper.

METHODS

The DS-Net constructed on the basis of full convolutional networks is composed of an auxiliary supervision network (ASN) and a classification network. The construction of the ASN based on the Siamese network aims to solve the problem of a small training set (the main bottleneck of deep learning in medical images). It uses paired data as the input and updates the network through combined labels. The classification network uses the features extracted by the ASN to perform accurate classification.

RESULTS

Pathological diagnosis is the most accurate method to identify osteosarcoma. However, due to intraclass variation and interclass similarity, it is challenging for pathologists to accurately identify osteosarcoma. Through the experiments on hematoxylin and eosin (H&E)-stained osteosarcoma histology slides, the DS-Net we constructed can achieve an average accuracy of 95.1%. Compared with existing methods, the DS-Net performs best in the test dataset.

CONCLUSIONS

The DS-Net we constructed can not only effectively realize the histological classification of osteosarcoma, but also be applicable to many other medical image classification tasks affected by small datasets.

摘要

目的

为实现骨肉瘤中存活和坏死肿瘤区域的自动分类,现有的大多数深度学习方法只能设计一个简单模型以防止在小数据集上过度拟合,这导致提取图像特征的能力较弱且模型准确率较低。为解决上述问题,本文设计了一种具有连体网络的深度模型(DS-Net)。

方法

基于全卷积网络构建的DS-Net由一个辅助监督网络(ASN)和一个分类网络组成。基于连体网络构建ASN旨在解决训练集小的问题(医学图像深度学习的主要瓶颈)。它将配对数据作为输入,并通过组合标签更新网络。分类网络使用ASN提取的特征进行准确分类。

结果

病理诊断是识别骨肉瘤最准确的方法。然而,由于类内变异和类间相似性,病理学家准确识别骨肉瘤具有挑战性。通过对苏木精和伊红(H&E)染色的骨肉瘤组织学切片进行实验,我们构建的DS-Net平均准确率可达95.1%。与现有方法相比,DS-Net在测试数据集中表现最佳。

结论

我们构建的DS-Net不仅能有效实现骨肉瘤的组织学分类,还适用于受小数据集影响的许多其他医学图像分类任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验