Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Biomater Sci. 2021 Oct 12;9(20):6753-6762. doi: 10.1039/d1bm01170g.
Fast advances in soft robotics and tissue engineering demand for new soft materials whose mechanical properties can be interchangeably and locally varied, thereby enabling, for example, the design of soft joints within an integral material. Inspired by nature, we introduce a competitive ligand-mediated approach to selectively and interchangeably reinforce metal-coordinated hydrogels. This is achieved by reinforcing carboxylate-containing hydrogels with Fe ions. Key to achieving a homogeneous, predictable reinforcement of the hydrogels is the presence of weak complexation agents that delay the formation of metal-complexes within the hydrogels, thereby allowing a homogeneous distribution of the metal ions. The resulting metal-reinforced hydrogels show a compressive modulus of up to 2.5 MPa, while being able to withstand pressures as high as 0.6 MPa without appreciable damage. Competitive ligand exchanges offer an additional advantage: they enable non-linear compositional changes that, for example, allow the formation of joints within these hydrogels. These features open up new possibilities to extend the field of use of metal reinforced hydrogels to load-bearing applications that are omnipresent for example in soft robots and actuators.
快速发展的软机器人技术和组织工程学需要新型的软材料,这些材料的机械性能可以相互替换和局部变化,从而能够在整体材料内设计软关节。受自然启发,我们引入了一种竞争性配体介导的方法来选择性和可互换地增强配位水凝胶。这是通过用 Fe 离子增强含有羧酸盐的水凝胶来实现的。实现水凝胶均匀、可预测增强的关键是存在弱络合剂,它们会延迟水凝胶内金属配合物的形成,从而允许金属离子均匀分布。由此产生的金属增强水凝胶的抗压模量高达 2.5 MPa,同时能够承受高达 0.6 MPa 的压力而不会造成明显损坏。竞争性配体交换提供了另一个优势:它们能够实现非线性的组成变化,例如,允许在这些水凝胶内形成关节。这些特性为金属增强水凝胶的应用领域扩展到例如在软机器人和执行器中无处不在的承载应用开辟了新的可能性。