Charlet Alvaro, Lutz-Bueno Viviane, Mezzenga Raffaele, Amstad Esther
Soft Materials Laboratory, Institute of Materials, EPFL Lausanne, Lausanne 1015, Switzerland.
Laboratory of Food and Soft Materials Science, Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland.
Nanoscale. 2021 Feb 25;13(7):4073-4084. doi: 10.1039/d0nr08351h.
Metal-coordinated hydrogels are physical hydrogels entirely crosslinked by complexes between ligand decorated polymers and metal ions. The mechanical properties of these hydrogels strongly depend on the density and dynamics of metal-coordinated interactions. Most commonly, telechelic metal-coordinated hydrogels contain catechol or histidine ligands, although hydrogels containing a stronger complexation agent, nitrocatechol, have been reported. Here, we introduce a pyrogallol end-functionalized polymer that can be crosslinked with di- and trivalent ions, in contrast to previously reported metal-coordinated hydrogels. We can tune the mechanical properties of the hydrogels with the types of ions used and the density of crosslinking sites. Ions form nm-sized precipitates that bind to pyrogallols and impart distinct properties to the hydrogels: strong ion-pyrogallol interactions that form in the presence of Al3+, V3+, Mn2+, Fe3+, Co2+, Ni2+ and Cu2+ result in long relaxation times. The resulting hydrogels display solid-like yet reversible mechanical properties, such that they can be processed into macroscopic 3D structures that retain their shapes. Weak ion-pyrogallol interactions that form in the presence of Ca2+ or Zn2+ result in short relaxation times. The resulting hydrogels display a fast self-healing behavior, suited for underwater glues, for example. The flexibility of tuning the mechanical properties of hydrogels simply by selecting the adequate ion-pyrogallol pair broadens the mechanical properties of metal-coordinated hydrogels to suit a wide range of applications that require them to retain their shape for a given time to act as dampers.
金属配位水凝胶是通过配体修饰的聚合物与金属离子之间的络合物完全交联而成的物理水凝胶。这些水凝胶的机械性能强烈依赖于金属配位相互作用的密度和动力学。最常见的是,遥爪金属配位水凝胶含有儿茶酚或组氨酸配体,不过也有报道称存在含有更强络合剂硝基儿茶酚的水凝胶。在此,我们引入了一种焦没食子酸末端功能化的聚合物,与先前报道的金属配位水凝胶不同,它可以与二价和三价离子交联。我们可以通过所用离子的类型和交联位点的密度来调节水凝胶的机械性能。离子形成纳米尺寸的沉淀物,这些沉淀物与焦没食子酸结合并赋予水凝胶独特的性能:在Al3+、V3+、Mn2+、Fe3+、Co2+、Ni2+和Cu2+存在下形成的强离子 - 焦没食子酸相互作用会导致长弛豫时间。由此产生的水凝胶表现出类似固体但可逆的机械性能,因此它们可以被加工成能保持其形状的宏观三维结构。在Ca2+或Zn2+存在下形成的弱离子 - 焦没食子酸相互作用会导致短弛豫时间。由此产生的水凝胶表现出快速的自愈行为,例如适用于水下胶水。仅仅通过选择合适的离子 - 焦没食子酸对来调节水凝胶机械性能的灵活性拓宽了金属配位水凝胶的机械性能范围,以适应广泛的应用,这些应用要求它们在给定时间内保持形状以充当减震器。